CAREER: Predictive Analysis of Stability-Critical Structures: an Uncertainty-Informed Path from Measurements to Theory

职业:稳定性关键结构的预测分析:从测量到理论的不确定性路径

基本信息

  • 批准号:
    1351742
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-09-01 至 2020-09-30
  • 项目状态:
    已结题

项目摘要

The underlying theme of this Faculty Early Career Development (CAREER) Program award is the development of a unified predictive analysis framework that will significantly improves the state of analysis-based design for stability-critical structures. The framework crosses disciplinary boundaries by bringing together data mining, information theory and statistical inference techniques from data sciences and high fidelity stochastic nonlinear solvers that are based on embedded nonlinear predictors into incremental-iterative path following techniques from computational sciences. Thin-wall structural components such as cold-formed steel members and thin wall cylindrical structures are extremely sensitive to material and fabrication imperfections because they fail in buckling mode when subjected to compressive stresses. The buckling/stability failure mode makes it difficult to predict collapse loads. The challenge in devising predictive analysis framework for components is that a slight deviation from perfection dramatically affects their response to loads. The result is a large scatter in results especially when the response up to collapse load is of interest. Realistic input models for observable and unobservable uncertainties that are adaptable to both global and local scales as well as to stochastic and deterministic methods will be a unique feature of the proposed framework. The goal is to develop analytical non-linear computational model that includes all variables, to integrate research in to curriculum and to provide outreach to community college and high school students. The computational model will be validated with experimental data that is already available.The methodologies developed in this project will advance the state of the art in computational modeling of stability-critical structures and will create a leap towards moderating large safety factors involved in designing these structures. A new course in probabilistic methods in structural stability will be developed for the PhD curriculum.
这项教师早期职业发展(Career)计划奖的基本主题是开发一个统一的预测分析框架,该框架将显著改善基于分析的稳定关键结构设计的状况。该框架跨越了学科界限,将数据科学的数据挖掘、信息论和统计推理技术以及高保真随机非线性求解器结合在一起,这些求解器基于嵌入到计算科学的增量迭代路径跟踪技术中的非线性预测器。冷弯薄壁型钢构件和薄壁圆筒结构等薄壁构件在受压应力作用时发生屈曲破坏,对材料和制造缺陷极为敏感。屈曲/稳定破坏模式使倒塌载荷的预测变得困难。为部件设计预测分析框架的挑战在于,与完美的微小偏差会显著影响它们对负载的响应。其结果是结果有很大的分散,特别是当需要考虑崩溃荷载的响应时。可观测和不可观测不确定性的实际输入模型可适应全球和局部尺度以及随机和确定性方法,这将是拟议框架的一个独特特点。其目标是开发包含所有变量的分析性非线性计算模型,将研究整合到课程中,并向社区大学和高中生提供推广。计算模型将用已有的实验数据进行验证。本项目中开发的方法将推动稳定性关键结构的计算建模的最新水平,并将朝着缓和设计这些结构所涉及的大安全系数的方向迈进。将为博士课程开发一门关于结构稳定的概率方法的新课程。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mazdak Tootkaboni其他文献

Learning texture-property relationships for brittle porous materials: A Bayesian approach with graph-theoretical features
学习脆性多孔材料的纹理-性能关系:一种具有图论特征的贝叶斯方法

Mazdak Tootkaboni的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mazdak Tootkaboni', 18)}}的其他基金

Collaborative Research: A Data-centric Uncertainty-informed Framework for Resilience Analytics of Critical Infrastructure Under Extreme Climate Events
协作研究:以数据为中心、基于不确定性的框架,用于极端气候事件下关键基础设施的复原力分析
  • 批准号:
    1826155
  • 财政年份:
    2019
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: Optimal Design of Flaw-tolerant Structures and Material Microarchitectures via Stochastic Topology Optimization
合作研究:通过随机拓扑优化进行容错结构和材料微体系结构的优化设计
  • 批准号:
    1401575
  • 财政年份:
    2014
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: Uncertainty Quantification and Model Validation in Thin-Walled Structures: A Probabilistic Paradigm for Advancing Analysis-Based Design
合作研究:薄壁结构中的不确定性量化和模型验证:推进基于分析的设计的概率范式
  • 批准号:
    1235238
  • 财政年份:
    2012
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant

相似海外基金

Topological Analysis for Predictive Spatial Signatures of Cancer progression and Treatment Response
癌症进展和治疗反应的预测空间特征的拓扑分析
  • 批准号:
    2882735
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Studentship
Creation of predictive biomarkers by comprehensive analysis of vernix caseosa for prevention of neonatal skin problems.
通过全面分析干酪皮脂创建预测生物标志物,用于预防新生儿皮肤问题。
  • 批准号:
    23K18393
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Next generation predictive maintenance for wind turbine blade/hub/rotor through novel online condition monitoring/root cause analysis: MONTURWIND
通过新颖的在线状态监测/根本原因分析对风力涡轮机叶片/轮毂/转子进行下一代预测性维护:MONTUWIND
  • 批准号:
    10041137
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Collaborative R&D
STTR Phase I: Portable single cell cytology and predictive analysis platform for the early detection of epithelial cancers
STTR 第一期:用于上皮癌早期检测的便携式单细胞细胞学和预测分析平台
  • 批准号:
    2233372
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Project 1: Systemic analysis of the origin and tissue effects of the 68-1 RhCMV/SIV vaccine efficacy-predictive whole blood transcriptomic signature
项目1:68-1 RhCMV/SIV疫苗功效预测全血转录组特征的起源和组织效应的系统分析
  • 批准号:
    10723639
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
Predictive value of Parkinson's Disease gait model-derived features for disease severity and progression estimation: An individual patient data meta-analysis.
帕金森病步态模型衍生特征对疾病严重程度和进展估计的预测价值:个体患者数据荟萃分析。
  • 批准号:
    495240
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
Statistical Methods and Theory for Predictive Biomarker Study in Clinical Trials via Modeling and Analysis of Covariate Interactions
通过协变量相互作用建模和分析进行临床试验中预测生物标志物研究的统计方法和理论
  • 批准号:
    RGPIN-2018-04462
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Discovery Grants Program - Individual
Predictive Data Analysis of Air Quality to Reduce Health Risks
空气质量预测数据分析以降低健康风险
  • 批准号:
    2774639
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Studentship
Spatiotemporal and Deep Learning Analysis of Cardiac Imaging for Predictive Risk Stratification in Duchenne Muscular Dystrophy
心脏成像的时空和深度学习分析用于杜氏肌营养不良症的预测风险分层
  • 批准号:
    10536912
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
Collaborative Research: Predictive Risk Investigation SysteM (PRISM) for Multi-layer Dynamic Interconnection Analysis
合作研究:用于多层动态互连分析的预测风险调查系统(PRISM)
  • 批准号:
    2326940
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了