Collaborative Research: Experimental and Computational Study of the Instabilities, Transport, and Self Assembly of Nanoscale Metallic Thin Films and Nanostructures
合作研究:纳米级金属薄膜和纳米结构的不稳定性、输运和自组装的实验和计算研究
基本信息
- 批准号:1235651
- 负责人:
- 金额:$ 19.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-01 至 2016-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1235710/1235651Kondic/RackThe project focuses on stability of liquid metal films and other structures on nanoscale. Nanosecond pulsed laser melting can produce spatially correlated nanoparticle assemblies, and the main goal is to explore the fundamental mechanisms driving this process. The distinguishing feature of this project is synergetic approach including modeling based on continuum fluid mechanics, targeted experiments, and supporting molecular dynamics simulations. The central goal is to leverage careful and thorough experimental investigations and state of the art theoretical and computational modeling of nanoscale liquid metal films to address several basic scientific questions such as: How to develop reasonably simple but predictive models to describe the forces relevant to liquid metals on nanoscale? To which degree can multi-scale modeling (molecular dynamics and continuum fluid dynamics) approaches be used to bridge experimental length scales? How to use the interactions characterizing molten liquid metals to promote self-assembly and self-organization at the nanoscale? To address these questions, the platinum-ruthenium binary metal system on graphite substrates will be investigated. The system was carefully chosen so complementary continuum fluid dynamics and molecular dynamics simulations can be performed to understand the relevant interface potentials as well as competing interfacial mixing and solidification dynamics. Thin films and other geometries will be synthesized to investigate solid-liquid-vapor interactions relevant to instabilities leading to nanoparticle assemblies, study the effects that the solidification dynamics has on synthesis of multi-functional nano particles, and to explore imposed thermal instabilities as a route to directed assembly. Experimental efforts will be complemented by theoretical and computational work, involving multi-dimensional nonlinear simulations including liquid-solid interaction potentials, thermal and phase change effects, and diffusive mixing, among other effects. Successful completion of the project will allow for significant advancement in under- standing of fundamental liquid phase assembly of metallic nanostructures. One example of an application where self- and directed assembly of nano particles is of significant importance is the design of solar cell devices where it is known that the size and distribution of metallic particles is related to plasmon coupling to incident energy, with the huge potential in increasing the yield. More generally, nano-assembly is of importance in a variety of fields, ranging from energy related to DNA sequencing. The project also includes development of complementary continuous and molecular dynamics simulations which will allow for bridging of relevant spatial and temporal scales, providing general insight regarding limits and applicability of continuum modeling on nanoscale. The project will include graduate and undergraduate students from multiple STEM disciplines and will involve international collaboration with a research group in Argentina.
1235710/1235651 Kondic/Rack该项目专注于液态金属薄膜和其他纳米结构的稳定性。纳秒脉冲激光熔化可以产生空间相关的纳米颗粒组装体,主要目标是探索驱动这一过程的基本机制。该项目的显著特点是协同方法,包括基于连续流体力学的建模,有针对性的实验和支持分子动力学模拟。中心目标是利用仔细和彻底的实验研究和最先进的理论和计算建模的纳米级液态金属薄膜,以解决几个基本的科学问题,如:如何开发合理简单,但预测模型来描述有关的力量,以液态金属的纳米?多尺度模拟(分子动力学和连续流体动力学)方法在多大程度上可以用于连接实验长度尺度?如何利用熔融液态金属的相互作用来促进纳米尺度的自组装和自组织?为了解决这些问题,铂-钌二元金属系统的石墨基板将进行调查。该系统经过精心选择,因此可以进行互补的连续流体动力学和分子动力学模拟,以了解相关的界面势以及竞争的界面混合和凝固动力学。薄膜和其他几何形状将被合成,以调查相关的不稳定性,导致纳米粒子组件的固-液-汽相互作用,研究的影响,固化动力学对多功能纳米粒子的合成,并探讨强加的热不稳定性作为一种途径,以定向组装。实验工作将由理论和计算工作来补充,涉及多维非线性模拟,包括液固相互作用势,热和相变效应,扩散混合等效应。该项目的成功完成将使对金属纳米结构的基本液相组装的理解取得重大进展。纳米颗粒的自组装和定向组装非常重要的应用的一个例子是太阳能电池器件的设计,众所周知,金属颗粒的尺寸和分布与入射能量的等离子体激元耦合有关,具有巨大的潜力提高产量。更一般地说,纳米组装在各种领域都很重要,从能源到DNA测序。该项目还包括开发互补的连续和分子动力学模拟,这将允许桥接相关的空间和时间尺度,提供有关纳米尺度连续建模的限制和适用性的一般见解。该项目将包括来自多个STEM学科的研究生和本科生,并将涉及与阿根廷研究小组的国际合作。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Philip Rack其他文献
Low-Temperature Charging Dynamics of the Ionic Liquid and Its Gating Effect on FeSe0.5Te0.5 Superconducting Films
离子液体的低温充电动力学及其对FeSe0.5Te0.5超导薄膜的门控效应
- DOI:
10.1021/acsami.9b02373 - 发表时间:
2019 - 期刊:
- 影响因子:9.5
- 作者:
Cheng Zhang;Wei Zhao;Sheng Bi;Christopher Rouleau;Jason Fowlkes;Walker Boldman;Genda Gu;Qiang Li;Guang Feng;Philip Rack - 通讯作者:
Philip Rack
Adding Solvent into Ionic Liquid-Gated Transistor: The Anatomy of Enhanced Gating Performance
在离子液体门控晶体管中添加溶剂:增强门控性能的剖析
- DOI:
10.1021/acsami.9b03433 - 发表时间:
2019 - 期刊:
- 影响因子:9.5
- 作者:
Wei Zhao;Sheng Bi;Cheng Zhang;Philip Rack;Guang Feng - 通讯作者:
Guang Feng
Philip Rack的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Philip Rack', 18)}}的其他基金
OP: Collaborative Research: Nanoscale Synthesis, Characterization and Modeling of Rationally Designed Plasmonic Materials and Architectures
OP:合作研究:合理设计的等离子体材料和结构的纳米级合成、表征和建模
- 批准号:
1709275 - 财政年份:2017
- 资助金额:
$ 19.66万 - 项目类别:
Standard Grant
Collaborative Research: Computations, Modeling and Experiments of Self and Directed Assembly for Nanoscale Liquid Metal Systems
合作研究:纳米级液态金属系统自组装和定向组装的计算、建模和实验
- 批准号:
1603780 - 财政年份:2016
- 资助金额:
$ 19.66万 - 项目类别:
Standard Grant
CPS: Synergy: Collaborative Research: Cyber-physical digital microfluidics based on active matrix electrowetting technology: software-programmable high-density pixel arrays
CPS:协同:协作研究:基于有源矩阵电润湿技术的网络物理数字微流体:软件可编程高密度像素阵列
- 批准号:
1544686 - 财政年份:2015
- 资助金额:
$ 19.66万 - 项目类别:
Standard Grant
Collaborative Research: Guided Electrowetting for Agile Channel Formation in Reconfigurable Lab-on-a-Chip
合作研究:引导电润湿在可重构芯片实验室中实现敏捷通道形成
- 批准号:
1001146 - 财政年份:2010
- 资助金额:
$ 19.66万 - 项目类别:
Standard Grant
Collaborative Research: Electrofluidic Carbon Nanofiber Arrays for Multi-Dimensional Separations
合作研究:用于多维分离的电流体碳纳米纤维阵列
- 批准号:
0728860 - 财政年份:2007
- 资助金额:
$ 19.66万 - 项目类别:
Standard Grant
NER: Nanoscale Electron Beam Stimulated Processing
NER:纳米级电子束刺激处理
- 批准号:
0210339 - 财政年份:2002
- 资助金额:
$ 19.66万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
NSF-BSF: Collaborative Research: Solids and reactive transport processes in sewer systems of the future: modeling and experimental investigation
NSF-BSF:合作研究:未来下水道系统中的固体和反应性输送过程:建模和实验研究
- 批准号:
2134594 - 财政年份:2024
- 资助金额:
$ 19.66万 - 项目类别:
Standard Grant
NSF-BSF: Collaborative Research: Solids and reactive transport processes in sewer systems of the future: modeling and experimental investigation
NSF-BSF:合作研究:未来下水道系统中的固体和反应性输送过程:建模和实验研究
- 批准号:
2134747 - 财政年份:2024
- 资助金额:
$ 19.66万 - 项目类别:
Standard Grant
Collaborative Research: Understanding Acoustoplasticity through Multiscale Computational and In-Situ, Time-Resolved Experimental Approach
合作研究:通过多尺度计算和原位时间分辨实验方法了解声塑性
- 批准号:
2148678 - 财政年份:2023
- 资助金额:
$ 19.66万 - 项目类别:
Standard Grant
Collaborative Research: Effect of Vertical Accelerations on the Seismic Performance of Steel Building Components: An Experimental and Numerical Study
合作研究:垂直加速度对钢建筑构件抗震性能的影响:实验和数值研究
- 批准号:
2244696 - 财政年份:2023
- 资助金额:
$ 19.66万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245111 - 财政年份:2023
- 资助金额:
$ 19.66万 - 项目类别:
Continuing Grant
Collaborative Research: High-velocity and long-displacement stick-slips: Experimental analogs of earthquake rupture and the seismic cycle
合作研究:高速和长位移粘滑运动:地震破裂和地震周期的实验模拟
- 批准号:
2240418 - 财政年份:2023
- 资助金额:
$ 19.66万 - 项目类别:
Continuing Grant
Collaborative Research: Experimental and computational constraints on the isotope fractionation of Mossbauer-inactive elements in mantle minerals
合作研究:地幔矿物中穆斯堡尔非活性元素同位素分馏的实验和计算约束
- 批准号:
2246686 - 财政年份:2023
- 资助金额:
$ 19.66万 - 项目类别:
Standard Grant
Collaborative Research: Enhancing Chemoselectivity and Efficiency Through Control of Axial Coordination in Rh(II) Complexes: An Experimental and Computational Approach
合作研究:通过控制 Rh(II) 配合物的轴向配位提高化学选择性和效率:实验和计算方法
- 批准号:
2247836 - 财政年份:2023
- 资助金额:
$ 19.66万 - 项目类别:
Standard Grant
Collaborative Research: Experimental General Relativity using Radio Interferometry of a Black Hole Photon Ring
合作研究:利用黑洞光子环射电干涉测量的实验广义相对论
- 批准号:
2307887 - 财政年份:2023
- 资助金额:
$ 19.66万 - 项目类别:
Standard Grant
Collaborative Research: Experimental and computational constraints on the isotope fractionation of Mossbauer-inactive elements in mantle minerals
合作研究:地幔矿物中穆斯堡尔非活性元素同位素分馏的实验和计算约束
- 批准号:
2246687 - 财政年份:2023
- 资助金额:
$ 19.66万 - 项目类别:
Standard Grant