Enzymatic Biocatalysis of Endocrine Disrupting Chemicals in Wastewater: A Sustainable Technology for Emerging Contaminants

废水中内分泌干扰化学物质的酶生物催化:新兴污染物的可持续技术

基本信息

  • 批准号:
    1236730
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-09-15 至 2017-08-31
  • 项目状态:
    已结题

项目摘要

1236730 (Brennan). As beneficial water reuse becomes a common practice throughout the world, concern over the effects of residual contaminants on aquatic ecosystems and human health is escalating. Found in everyday commercial items like plasticizers, pharmaceuticals, pesticides, and flame retardants, endocrinedisrupting chemicals (EDCs) have been shown to disrupt hormone function in exposed organisms, causing adverse physiological effects even at very low concentrations. Typically, these contaminants are not completely removed during conventional wastewater treatment, and are discharged into receiving waters where they can potentially harm ecosystems and re-enter potable water supplies. Although some physical and chemical treatment methods exist for treating EDCs in wastewater, they are expensive and unattainable for the majority of the world. An inexpensive, sustainable treatment method is sorely needed for removing these emerging contaminants from wastewater. Intellectual Merit. The overall objective of this research is to critically evaluate the technical and economic feasibility of enhancing EDC removal in wastewater treatment plants (WWTPs) using a symbiotic consortium of fungi and bacteria with a demonstrated ability to catalyze the elimination of EDCs. Although fungi havedemonstrated such a capacity to degrade EDCs in batch systems containing nutrient-rich growth media, the use of mycelia in continuous-flow systems for the treatment EDCs in wastewater has not been reported. The PI has recently shown, however, that certain fungi are able to grow in wastewater and produce biocatalytic enzymes that are capable of catalyzing the destruction of EDCs. Similarly, others have recently shown that ammonia oxidizing bacteria (AOB) can co-metabolically degrade certain classes of contaminants in wastewater using monoxygenase enzymes, and that in certain scenarios, bacteria-fungi interactions can result in a synergistic enhancement of overall degradative capacity. Therefore, to realize the full potential of WWTP ecology, this research will combine analytical chemistry and molecular microbiology techniques to understand the extent to which the AOB and fungal communities can be enhanced and augmented, and the mechanisms by which synergism can be promoted between inoculated and/or native fungi and AOB in WWTPs. It is envisioned that by promoting unique, enzyme-drivenbiocatalytic pathways, wastewater treatment processes can be optimized for effective EDC treatment while maximizing cost effectiveness. To meet this objective, data generated from a series of batch and bioreactor experiments will be incorporated into a Life Cycle Assessment (LCA) of the technology to determine its relative sustainability compared to more conventional physical and chemical treatment methods. Combining the results of lab-scale research with LCA results will enable a guided deployment of the technology for the treatment of EDCs at a pilot-scale ecological wastewater treatment system (a.k.a., eco-machine). If validated at the pilot-scale, then other eco-machine systems could be similarly converted, and conventional wastewater treatment plants could be enhanced or upgraded to include EDC-treatment. Broader Impact. In addition to supporting graduate and undergraduate student research, this project will disseminate information to the local community through an interactive website on safe water practices and guided tours of an eco-machine facility. The technology developed in this work would be the first to investigate the concept of enzyme-mediated destruction of emerging contaminants in wastewater using immobilized whole mycelia in combination with AOB, which could represent a significant cost savings over traditional treatment methods. Additionally, it is expected that improvements in the analytical identification and quantification of EDCs and their metabolites will be developed during this work, enabling progress in the understanding of EDC-degradation pathways, and thereby increasing the ability to optimize treatment processes for their removal. Finally, the LCA-driven development of the proposed technology will provide a detailed accounting of environmental costs and benefits and provide a framework for critical evaluation of the economic feasibility and long-term viability of the process, while providing insight into how its design can be improved for greater sustainability. This systems-based approach is a new paradigm for holistic wastewater treatment, which could serve as a model for the future development of sustainable infrastructure.
1236730(布伦南)。 随着有益的水回用在全世界成为一种普遍的做法,对残留污染物对水生生态系统和人类健康的影响的关注正在升级。在增塑剂、药品、杀虫剂和阻燃剂等日常商业物品中发现的内分泌干扰化学品(EDCs)已被证明会破坏暴露生物体的激素功能,即使在非常低的浓度下也会引起不良的生理影响。通常,这些污染物在传统的废水处理过程中没有被完全去除,而是被排放到接收沃茨中,在那里它们可能潜在地危害生态系统并重新进入饮用水供应。虽然存在一些物理和化学处理方法来处理废水中的内分泌干扰物,但它们对世界上大多数人来说都是昂贵且无法实现的。迫切需要一种廉价、可持续的处理方法来去除废水中的这些新污染物。智力优势。 本研究的总体目标是严格评估的技术和经济的可行性,提高EDC去除污水处理厂(WWTPs)使用的真菌和细菌的共生财团具有催化消除内分泌干扰物的能力。尽管真菌已经证明在含有营养丰富的生长培养基的分批系统中具有降解内分泌干扰物的能力,但在连续流系统中使用菌丝体处理废水中的内分泌干扰物的情况尚未报道。然而,PI最近表明,某些真菌能够在废水中生长,并产生能够催化破坏EDCs的生物催化酶。类似地,其他人最近已经表明,氨氧化细菌(AOB)可以使用单加氧酶共代谢降解废水中的某些类别的污染物,并且在某些情况下,细菌-真菌相互作用可以导致整体降解能力的协同增强。因此,为了充分发挥污水处理厂生态学的潜力,本研究将结合联合收割机分析化学和分子微生物学技术,以了解在何种程度上的AOB和真菌群落可以增强和扩大,以及通过接种和/或本地真菌和AOB之间的协同作用,可以促进污水处理厂的机制。据设想,通过促进独特的,酶驱动的生物催化途径,废水处理工艺可以优化有效的EDC处理,同时最大限度地提高成本效益。为了实现这一目标,从一系列批处理和生物反应器实验中产生的数据将被纳入该技术的生命周期评估(LCA)中,以确定其与更传统的物理和化学处理方法相比的相对可持续性。将实验室规模的研究结果与LCA结果相结合,将能够在中试规模的生态废水处理系统(又名,生态机)。如果在中试规模上得到验证,那么其他生态机器系统也可以进行类似的转换,传统的废水处理厂可以进行增强或升级,以包括EDC处理。更广泛的影响。 除了支持研究生和本科生的研究外,该项目还将通过一个关于安全用水做法的互动网站和生态机器设施的导游图尔斯,向当地社区传播信息。在这项工作中开发的技术将是第一个调查的概念,酶介导的破坏新兴的污染物在废水中使用固定化的整个菌丝体结合AOB,这可能是一个显着的成本节约传统的处理方法。此外,预计在这项工作中,将开发出对内分泌干扰物及其代谢物的分析鉴定和定量的改进,从而能够在理解内分泌干扰物降解途径方面取得进展,从而提高优化其去除处理过程的能力。最后,LCA驱动的拟议技术的开发将提供环境成本和效益的详细核算,并为该过程的经济可行性和长期可行性提供关键评估框架,同时提供如何改进其设计以提高可持续性的见解。这种基于系统的方法是全面废水处理的一种新模式,可以作为未来发展可持续基础设施的模式。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rachel Brennan其他文献

Rachel Brennan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rachel Brennan', 18)}}的其他基金

IGE: Stakeholder-Driven Sustainable Development Experiences for Enhancing STEM Graduate Education
IGE:利益相关者驱动的可持续发展经验,以加强 STEM 研究生教育
  • 批准号:
    2105726
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
ECO-CBET: Transforming the Nitrogen Bioeconomy
ECO-CBET:改变氮生物经济
  • 批准号:
    2033717
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
CAREER: Solving a Global Water Crisis in a Local Watershed: A Comprehensive Analysis of Chitin as a Multifunctional Substrate for the Treatment of Acid Mine Drainage
职业:解决当地流域的全球水危机:甲壳素作为多功能基质处理酸性矿山排水的综合分析
  • 批准号:
    0644983
  • 财政年份:
    2007
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似海外基金

3D Printing Proteins for Continuous Flow Biocatalysis and Bioabsorbtion
用于连续流生物催化和生物吸收的 3D 打印蛋白质
  • 批准号:
    2753054
  • 财政年份:
    2026
  • 资助金额:
    $ 30万
  • 项目类别:
    Studentship
Tungsten Biocatalysis - Heavy Metal Enzymes for Sustainable Industrial Biocatalysis
钨生物催化 - 用于可持续工业生物催化的重金属酶
  • 批准号:
    10097682
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    EU-Funded
Rewiring P450s for efficient biocatalysis
重新布线 P450 以实现高效生物催化
  • 批准号:
    2898080
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Studentship
N-Heterocyclic Carbenes for Sustainable Organo- and Biocatalysis
用于可持续有机和生物催化的 N-杂环卡宾
  • 批准号:
    2866390
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Studentship
Organic Synthesis and Biocatalysis
有机合成与生物催化
  • 批准号:
    CRC-2016-00268
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Canada Research Chairs
An Evolvable Metalloenzyme Platform for Stereoselective Radical Biocatalysis
用于立体选择性自由基生物催化的可进化金属酶平台
  • 批准号:
    10792280
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
An Evolvable Metalloenzyme Platform for Stereoselective Radical Biocatalysis
用于立体选择性自由基生物催化的可进化金属酶平台
  • 批准号:
    10502191
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
Biocatalysis using P450 Monooxygenases for the Synthesis of Novel Biodegradable Fragrances
使用 P450 单加氧酶的生物催化合成新型可生物降解香料
  • 批准号:
    BB/X511407/1
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Training Grant
Microbial catabolism and biocatalysis
微生物分解代谢和生物催化
  • 批准号:
    CRC-2020-00203
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Canada Research Chairs
Assembly of Artificial Metalloenzymes for Biocatalysis
用于生物催化的人工金属酶的组装
  • 批准号:
    2741774
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了