EAGER-Profiles: Using researcher profiles to demonstrate the impact of investments in science

EAGER-Profiles:使用研究人员资料来展示科学投资的影响

基本信息

  • 批准号:
    1238469
  • 负责人:
  • 金额:
    $ 29.94万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-07-01 至 2014-03-31
  • 项目状态:
    已结题

项目摘要

Evaluating the return on investment in science involves accurately associating research inputs (e.g., grants and contracts) with research outputs (e.g., publications and patents). Because many of today's significant discoveries are produced by large multi-institution, cross-disciplinary teams -- often supported by different sponsors, with potential impact spread across different fields -- accurately linking outputs to inputs can be challenging. This research investigates whether and to what extent an online profiling system that aggregates research data around the individual researcher facilitates the processes of linking research inputs to outputs and provides benefits to scientists, institutions, publishers, and agencies. It compares the value of using different data sources, such as federal systems, institutional repositories, commercial databases, manual data entry by librarians and administrators, and data entry by the scientists themselves, to populate a prototype website that profiles computer scientists from multiple institutions. Intellectual Merit: The research breaks new ground in a variety of ways. It determines the cost and effort required to obtain each data source, including the resources needed to disambiguate names in order to link data on scientific contributions to the correct people responsible for them; it calculates the potential reduction in administrative burden each data source provides by measuring the amount of time it takes for a scientist, without the help of a researcher profiling system, to manually locate the data and enter it into an online form; and it evaluates which data sources contain the most information about high-impact cross-institutional or multi-disciplinary research, using data mining techniques to generate collaboration and topic-cluster maps.This study is appropriate for the EAGER program because it is both high-risk -- in that the outcome depends on the coordination of multiple software products, institutions, agencies and data sources in a rapid timeframe -- and high-reward, in that a successful prototype would accelerate the implementation of a national researcher profiling system that benefits multiple stakeholders.The field of Computer Science exemplifies all the challenges and potential rewards of a nation-wide researcher profiling system. Computer scientists are funded by many different agencies (NSF, NIH, DOE, DOD, NASA, etc.); their research outputs take many forms (publications, conference presentations, software, databases, algorithms, patents, etc.); and they collaborate across many disciplines (such as medicine, economics, engineering, physics, and social science). Broader impacts: A publicly-accessible national researcher-profiling system based on linked open data promises numerous benefits beyond enabling more accurate measures of return on federal investment in science. These benefits include the potential to streamline the grant application and reporting process for researchers, identify reviewers without conflicts of interest, help researchers find collaborators, match trainees and junior investigators with mentors and jobs, and enable scientists to showcase their work.
评估科学投资回报涉及将研究投入(例如拨款和合同)与研究产出(例如出版物和专利)准确地联系起来。由于当今许多重大发现都是由大型多机构、跨学科团队产生的——通常得到不同赞助商的支持,潜在影响分布在不同领域——准确地将产出与投入联系起来可能具有挑战性。这项研究调查了一个在线分析系统是否以及在多大程度上聚合了个体研究人员的研究数据,促进了将研究输入与输出联系起来的过程,并为科学家、机构、出版商和代理机构带来了好处。它比较了使用不同数据源(例如联邦系统、机构存储库、商业数据库、图书馆员和管理员的手动数据输入以及科学家自己的数据输入)来填充描述来自多个机构的计算机科学家的原型网站的价值。智力优势:这项研究在多个方面开辟了新天地。 它确定了获取每个数据源所需的成本和工作量,包括消除名称歧义所需的资源,以便将科学贡献的数据与正确的负责人联系起来;它通过测量科学家在没有研究人员分析系统帮助的情况下手动查找数据并将其输入在线表格所需的时间来计算每个数据源提供的管理负担的潜在减少;它评估哪些数据源包含关于高影响力的跨机构或多学科研究的最多信息,使用数据挖掘技术生成协作和主题集群图。这项研究适合 EAGER 计划,因为它既具有高风险(因为结果取决于多个软件产品、机构、机构和数据源在快速时间范围内的协调),又具有高回报(因为成功的原型) 将加速实施国家研究人员分析系统,使多个利益相关者受益。计算机科学领域体现了全国研究人员分析系统的所有挑战和潜在回报。计算机科学家受到许多不同机构的资助(NSF、NIH、DOE、DOD、NASA 等);他们的研究成果有多种形式(出版物、会议演示、软件、数据库、算法、专利等);他们跨多个学科(如医学、经济学、工程学、物理学和社会科学)进行合作。更广泛的影响:基于链接的开放数据的可公开访问的国家研究人员分析系统除了能够更准确地衡量联邦科学投资的回报之外,还带来了许多好处。这些好处包括有可能简化研究人员的资助申请和报告流程,识别没有利益冲突的审稿人,帮助研究人员找到合作者,将受训者和初级研究人员与导师和工作相匹配,并使科学家能够展示他们的工作。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Griffin Weber其他文献

Interdisciplinary Problem Solving in Hybrid Organizations: The Implications of Scientific Reputation and Disciplinary Knowledge Diversity
混合组织中的跨学科问题解决:科学声誉和学科知识多样性的含义
Productivity spillovers in two overlapping networks
两个重叠网络中的生产力溢出
  • DOI:
    10.1080/17421772.2021.1884279
  • 发表时间:
    2021-02
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    Wei Cheng;Griffin Weber
  • 通讯作者:
    Griffin Weber

Griffin Weber的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Griffin Weber', 18)}}的其他基金

Identifying cross-disciplinary pathways to translational science
确定转化科学的跨学科途径
  • 批准号:
    1360042
  • 财政年份:
    2014
  • 资助金额:
    $ 29.94万
  • 项目类别:
    Standard Grant

相似国自然基金

HarpinXoo 启动水稻抗病性及相关信号传导调控基因的表达图式 (expression profiles)
  • 批准号:
    30370969
  • 批准年份:
    2003
  • 资助金额:
    17.0 万元
  • 项目类别:
    面上项目

相似海外基金

Developing a new generation of tools for predicting novel AMR mutation profiles using generative AI
使用生成人工智能开发新一代工具来预测新型 AMR 突变谱
  • 批准号:
    BB/Z514305/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.94万
  • 项目类别:
    Research Grant
Investigating Shunt-Responsiveness in Idiopathic Normal Pressure Hydrocephalus Using White Matter Tractography and Degenerative Biomarker Profiles
使用白质纤维束成像和退行性生物标志物谱研究特发性正常压力脑积水的分流反应性
  • 批准号:
    MR/W030098/1
  • 财政年份:
    2023
  • 资助金额:
    $ 29.94万
  • 项目类别:
    Research Grant
Elucidating the modes of action of drugs using transcription factor binding profiles
使用转录因子结合谱阐明药物的作用模式
  • 批准号:
    22KJ1890
  • 财政年份:
    2023
  • 资助金额:
    $ 29.94万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Development of a trans-omics approach for predicting synergistic drug combinations using protein-protein interactions and gene expression profiles
开发利用蛋白质-蛋白质相互作用和基因表达谱预测协同药物组合的跨组学方法
  • 批准号:
    22KJ2496
  • 财政年份:
    2023
  • 资助金额:
    $ 29.94万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Generalized sequential data mining using enhanced object representations based on preliminary clustering profiles
使用基于初步聚类概况的增强对象表示的广义顺序数据挖掘
  • 批准号:
    RGPIN-2018-05363
  • 财政年份:
    2022
  • 资助金额:
    $ 29.94万
  • 项目类别:
    Discovery Grants Program - Individual
Advancing the Development of Realistic and Probabilistic Shear Wave Velocity Profiles Using Advanced Inversion Strategies
使用先进的反演策略促进现实和概率横波速度剖面的开发
  • 批准号:
    2100889
  • 财政年份:
    2022
  • 资助金额:
    $ 29.94万
  • 项目类别:
    Standard Grant
Evaluating a precision medicine approach to nephrotic syndrome using novel genetic risk profiles: A pilot adaptive clinical trial
使用新的遗传风险特征评估肾病综合征的精准医学方法:一项试点适应性临床试验
  • 批准号:
    466596
  • 财政年份:
    2021
  • 资助金额:
    $ 29.94万
  • 项目类别:
    Studentship Programs
Generalized sequential data mining using enhanced object representations based on preliminary clustering profiles
使用基于初步聚类概况的增强对象表示的广义顺序数据挖掘
  • 批准号:
    RGPIN-2018-05363
  • 财政年份:
    2021
  • 资助金额:
    $ 29.94万
  • 项目类别:
    Discovery Grants Program - Individual
Linking Gene Expression Profiles to Cell Fate in Clostridioides difficile Using Time-Lapse Microscopy
使用延时显微镜将基因表达谱与艰难梭菌细胞命运联系起来
  • 批准号:
    10330034
  • 财政年份:
    2021
  • 资助金额:
    $ 29.94万
  • 项目类别:
Linking Gene Expression Profiles to Cell Fate in Clostridioides difficile Using Time-Lapse Microscopy
使用延时显微镜将基因表达谱与艰难梭菌细胞命运联系起来
  • 批准号:
    10223787
  • 财政年份:
    2021
  • 资助金额:
    $ 29.94万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了