INSPIRE: Mimicking the Functional Complexity of Biology with Man-Made Systems

INSPIRE:用人造系统模仿生物学的功能复杂性

基本信息

  • 批准号:
    1243082
  • 负责人:
  • 金额:
    $ 99.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-07-15 至 2016-06-30
  • 项目状态:
    已结题

项目摘要

This CREATIV award is partially funded by the Biomolecular Dynamics, Structure and Function Cluster in the Division of Molecular and Cellular Biosciences in the Directorate for Biological Sciences; the Physics of Living Systems Program in the Division of Physics and the Chemistry of Life Processes Program in the Division of Chemistry in the Directorate of Mathematical and Physical Sciences; and the Bioengineering and Engineering Healthcare Cluster in the Division of Chemical, Bioengineering, Environmental and Transport Systems in the Directorate of Engineering. The objective of this CREATIV project is to organize functional components into devices or interfaces that interrogate and control biological systems. Biology performs very complex processes using linear heteropolymers that are made by hooking together a relatively small set of monomers in a particular order. This rather digital approach to creating chemical function can, in principle, be applied to the development of molecular scale devices of our own creation. However, thus far, libraries of molecules that cannot be individually assayed or computationally designed have been used. In addition, the ability to organize functional components into such devices or to create structured molecular interfaces has been quite primitive. Recently, however, a number of interdisciplinary technologies have come together which promise to provide truly new approaches to creating chemical complexity and molecular function that rivals that of biology. Methods have been developed to specifically design, fabricate, and interrogate millions of different molecules in ordered libraries. In addition, functional elements can be incorporated into molecular-scale devices with nanometer accuracy or interfaced directly with micro-electronics, allowing both interrogation and control of complex chemical and biological systems. Here, the first step towards capitalizing on the combined power of these capabilities is proposed. Initially an ordered library of multivalent synthetic ligands on a surface that has a molecular recognition capacity approaching that of the mammalian immune system will be created. This library will then be used to enhance three research efforts; organizing and optimizing multienzyme reaction pathways using DNA nanostructures; interfacing redox proteins with electrodes using the bacterial photosynthetic reaction center as a model; and finally identifying eukaryotic cell types and controlling their gene expression patterns and growth/differentiation characteristics via specific molecular interactions.The integration of technologies and concepts in computational design, high throughput molecular synthesis, high throughput detailed chemical analysis, and electronic integration has the potential to create completely artificial systems with the complexity and diverse functionality of biological systems, but with the accessible control mechanisms that interface seamlessly with the electronic world. The project depends on collaboration among computational, synthetic, electronic and biological regulation capabilities. This project will expose junior scientists to the challenges of interdisciplinary research, and will allow them to be involved at the creation of conceptual frameworks and initial tools that could lead to highly efficient multi-enzyme pathways, rapid systems for personalized drug development, comprehensive diagnostics, energy harvesting, and a new type of biohybrid circuitry that interconverts chemical and electronic information.
该CREATIV奖部分由生物科学理事会分子和细胞生物科学部的生物分子动力学,结构和功能集群资助;物理学部的生命系统物理学计划和数学和物理科学理事会化学部的生命过程化学计划;以及工程局化学、生物工程、环境和运输系统司的生物工程和工程医疗保健集群。CREATIV项目的目标是将功能组件组织成询问和控制生物系统的设备或接口。生物学使用线性杂聚物进行非常复杂的过程,线性杂聚物是通过以特定顺序将相对较小的一组单体连接在一起而制成的。 这种创造化学功能的相当数字化的方法原则上可以应用于我们自己创造的分子尺度设备的开发。 然而,到目前为止,已经使用了无法单独分析或计算设计的分子库。 此外,将功能组件组织到这样的设备中或创建结构化分子界面的能力还相当原始。 然而,最近,一些跨学科的技术已经走到一起,承诺提供真正的新方法来创造化学复杂性和分子功能,与生物学相媲美。 已经开发了专门设计、制造和询问有序文库中数百万种不同分子的方法。 此外,功能元件可以被整合到具有纳米精度的分子级器件中,或者直接与微电子器件连接,从而允许对复杂的化学和生物系统进行询问和控制。 在这里,第一步,对这些能力的综合力量的资本化建议。 最初,将在具有接近哺乳动物免疫系统的分子识别能力的表面上创建多价合成配体的有序文库。该库将用于加强三项研究工作:使用DNA纳米结构组织和优化多酶反应途径;使用细菌光合反应中心作为模型将氧化还原蛋白与电极连接;最终鉴定真核细胞类型并控制其基因表达模式和生长,通过特定的分子相互作用的差异化特征。在计算设计,高通量分子合成,高通量详细的化学分析和电子集成有可能创建完全人工系统,具有生物系统的复杂性和多样性功能,但具有与电子世界无缝接口的可访问控制机制。 该项目依赖于计算、合成、电子和生物调节能力之间的合作。 该项目将使初级科学家面临跨学科研究的挑战,并使他们能够参与创建概念框架和初始工具,这些工具可能导致高效的多酶途径,个性化药物开发的快速系统,综合诊断,能量收集,以及一种新型的生物混合电路,可相互转换化学和电子信息。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Neal Woodbury其他文献

Quantum Dot-based Fluorescence Resonance Energy Transfer through Exciton Dynamics in DNA-Templated J-Aggregates
  • DOI:
    10.1016/j.bpj.2017.11.2857
  • 发表时间:
    2018-02-02
  • 期刊:
  • 影响因子:
  • 作者:
    Sarthak Mandal;Xu Zhou;Nour Eddine Fahmi;Su Lin;Hao Yan;Neal Woodbury
  • 通讯作者:
    Neal Woodbury
Orchestrating Cloud-supported Workspaces for a Computational Biochemistry Course at Large Scale
为大规模计算生物化学课程编排云支持的工作空间
  • DOI:
    10.22369/issn.2153-4136/14/2/7
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gil Speyer;Neal Woodbury;Arun Neelicattu;Aaron Peterson;Greg Schwimer;George Slessman
  • 通讯作者:
    George Slessman

Neal Woodbury的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Neal Woodbury', 18)}}的其他基金

Prevalence of Immune Response for Ebola in the Endemic Populations
流行人群中埃博拉免疫反应的发生率
  • 批准号:
    1518528
  • 财政年份:
    2014
  • 资助金额:
    $ 99.99万
  • 项目类别:
    Standard Grant
Protein Dynamics in Electron Transfer
电子转移中的蛋白质动力学
  • 批准号:
    1157788
  • 财政年份:
    2012
  • 资助金额:
    $ 99.99万
  • 项目类别:
    Continuing Grant
The Assembly of Photosynthetic Light-Harvesting Complexes in Whole Cells
全细胞中光合光捕获复合物的组装
  • 批准号:
    1057827
  • 财政年份:
    2011
  • 资助金额:
    $ 99.99万
  • 项目类别:
    Standard Grant
Enzymology of multi-enzyme systems on self-assembled surfaces
自组装表面多酶系统的酶学
  • 批准号:
    1033222
  • 财政年份:
    2010
  • 资助金额:
    $ 99.99万
  • 项目类别:
    Standard Grant
The Topology of Peptide/Protein Interaction Space
肽/蛋白质相互作用空间的拓扑
  • 批准号:
    0940914
  • 财政年份:
    2009
  • 资助金额:
    $ 99.99万
  • 项目类别:
    Standard Grant
Protein Control of Electron Transfer Pathways in Photosynthesis
光合作用中电子传递途径的蛋白质控制
  • 批准号:
    0642260
  • 财政年份:
    2007
  • 资助金额:
    $ 99.99万
  • 项目类别:
    Continuing Grant
"SGER: Merging Single Molecule Spectroscopy and Molecular Simulation".
“SGER:合并单分子光谱学和分子模拟”。
  • 批准号:
    0631631
  • 财政年份:
    2006
  • 资助金额:
    $ 99.99万
  • 项目类别:
    Standard Grant
Characterization of DNA/Protein Interactions at the Single Molecule Level
单分子水平 DNA/蛋白质相互作用的表征
  • 批准号:
    0239986
  • 财政年份:
    2003
  • 资助金额:
    $ 99.99万
  • 项目类别:
    Continuing Grant
Controlling the Pathway of Electron Transfer in Bacterial Reaction Centers
控制细菌反应中心的电子转移途径
  • 批准号:
    0131776
  • 财政年份:
    2002
  • 资助金额:
    $ 99.99万
  • 项目类别:
    Continuing Grant
IGERT: Optical Biomolecular Devices: From Natural Paradigms to Practical Applications
IGERT:光学生物分子器件:从自然范例到实际应用
  • 批准号:
    0114434
  • 财政年份:
    2001
  • 资助金额:
    $ 99.99万
  • 项目类别:
    Continuing Grant

相似海外基金

"Mimicking Human Head Sound Responses": Towards an Anatomically Accurate Head Prototype for Bone Conduction Crosstalk Cancellation Analysis with Humans
“模仿人类头部声音反应”:构建解剖学上准确的头部原型,用于人类骨传导串扰消除分析
  • 批准号:
    24K20786
  • 财政年份:
    2024
  • 资助金额:
    $ 99.99万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Bioinspired photoreceptor and smart neural mimicking technologies
仿生感光器和智能神经模仿技术
  • 批准号:
    DP240100145
  • 财政年份:
    2024
  • 资助金额:
    $ 99.99万
  • 项目类别:
    Discovery Projects
人口知能を用いたCT画像に基づくLung Cancer mimicking Organizing Pneumonia の診断
利用人工智能基于CT图像模拟组织性肺炎的肺癌诊断
  • 批准号:
    24K18841
  • 财政年份:
    2024
  • 资助金额:
    $ 99.99万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Engineering viscoelastic hydrogels for mimicking the tumour microenvironment and stopping tumour progression
工程粘弹性水凝胶用于模拟肿瘤微环境并阻止肿瘤进展
  • 批准号:
    2888787
  • 财政年份:
    2023
  • 资助金额:
    $ 99.99万
  • 项目类别:
    Studentship
SBIR Phase II: Mimicking Metatarsophalangeal Joints Using Tailored, Ultra-Dissipative, Liquid-Crystalline Elastomers to Treat Hallux Rigidus
SBIR 第二阶段:使用定制的超耗散液晶弹性体模仿跖趾关节来治疗拇趾僵硬
  • 批准号:
    2242770
  • 财政年份:
    2023
  • 资助金额:
    $ 99.99万
  • 项目类别:
    Cooperative Agreement
Cation-free mRNA delivery careers mimicking ribonucleoprotein
模仿核糖核蛋白的无阳离子 mRNA 递送事业
  • 批准号:
    23K11861
  • 财政年份:
    2023
  • 资助金额:
    $ 99.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
NASP NeuroVoice: Development of Brain-Mimicking Chip for Improved Hearing and Speaking Experience for Millions of Users
NASP NeuroVoice:开发模拟大脑芯片,改善数百万用户的听力和口语体验
  • 批准号:
    10055569
  • 财政年份:
    2023
  • 资助金额:
    $ 99.99万
  • 项目类别:
    Collaborative R&D
Collaborative Research: Mimicking Stress-Mediated Invasive Solid Tumor Using Bioprinted Microtissue and Acoustofluidics
合作研究:利用生物打印微组织和声流控技术模拟压力介导的侵袭性实体瘤
  • 批准号:
    2243507
  • 财政年份:
    2023
  • 资助金额:
    $ 99.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Enzyme-Mimicking Catalysts for Cellulose Processing
合作研究:用于纤维素加工的模拟酶催化剂
  • 批准号:
    2246635
  • 财政年份:
    2023
  • 资助金额:
    $ 99.99万
  • 项目类别:
    Continuing Grant
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
  • 批准号:
    23K15696
  • 财政年份:
    2023
  • 资助金额:
    $ 99.99万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了