Protein Control of Electron Transfer Pathways in Photosynthesis
光合作用中电子传递途径的蛋白质控制
基本信息
- 批准号:0642260
- 负责人:
- 金额:$ 117.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-04-01 至 2013-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The initial solar energy conserving event in photosynthesis is the transfer of an electron between an excited donor and a neighboring acceptor molecule in the reaction center, an intrinsic membrane protein-pigment complex. In this project the PI will continue his studies of the purple nonsulfur bacterium Rhodobacter sphaeroides, investigating the driving force and temperature dependence of the initial electron transfer reactions. The PI has used a form of reaction diffusion theory, applied previously to electron transfer in viscous solvents, to describe the complex kinetics of electron transfer as a function of driving force and temperature. This approach has been remarkably successful, implying that protein conformational changes initiated by light absorption control the observed kinetics instead of a static barrier crossing between two potential surfaces. Several important questions have been raised by this work that need to be answered. First, the nature of the protein motion and the spectroscopic signal at 280 nm that appears to be a probe of this motion are unclear. It is currently hypothesized that this is due to tryptophan residues responding to changes in the protein environment, but this remains to be proven. Second, a more detailed mechanistic exploration of the relationship between protein relaxation and electron transfer is necessary. This new model provides an opportunity to determine the reorganization energy, driving force and coupling for a whole series of mutants as a function of temperature, resulting in a much more complete mechanistic picture of initial photosynthetic electron transfer than has ever been available previously. Finally, this work will be merged with current directed evolution approaches to produce mutants that undergo high yield electron transfer along the normally unused cofactor pathway (the B-side). A very similar set of studies as a function of driving force and temperature will then be performed on these mutants to explore the mechanistic similarities and differences between the two electron transfer pathways. The PI is involved in expanding interdisciplinary research at both the graduate and undergraduate levels. The PI has seven undergraduates working with him, two directly on this project. In addition, the concepts involved in photosynthetic research are used to enrich his teaching in both physical chemistry and biochemistry. For example, the PI teaches a course on bio-nanotechnology as part of a learning community project at ASU in which sophomores explore the science, policy and sociology of nanotechnology. The PI is also the director of an NSF IGERT program in biomolecular nanotechnology. The photosynthetic reaction center is a premier example of an optoelectronic device at the nanoscale and the concepts from this work are one of the key examples of biomolecular nanotechnology studied by the IGERT students. The PI is also the current director of the ASU BioEnergy Research Initiative, a new initiative growing out of ASU's Photosynthesis Center that seeks to take our growing understanding of photosynthetic processes and utilize them in the development of new energy sources and means of energy transduction. Finally, the PI directs the Center for BioOptical Nanotechnology in the Biodesign Institute. In this role, he directly interfaces with a large number of private, commercial and citizens groups, and these discussions form the basis for a new approach to community-embedded research, in which the needs of society and the process of discovery are integrated in a new hybrid model for interdisciplinary research. This project is jointly supported by Molecular Biophysics in the Division of Molecular and Cellular Biosciences in the Directorate for Biological Sciences and the Experimental Physical Chemistry Program in the Division of Chemistry in the Mathematical and Physical Sciences Directorate.
在光合作用中,最初的太阳能保存事件是电子在反应中心(内在膜蛋白-色素复合物)中的激发供体和相邻受体分子之间的转移。在这个项目中,PI将继续研究紫色非硫细菌Rhodobacter sphaeroides,研究初始电子转移反应的驱动力和温度依赖性。 PI已经使用了一种形式的反应扩散理论,以前应用于粘性溶剂中的电子转移,来描述作为驱动力和温度的函数的电子转移的复杂动力学。这种方法已经取得了显着的成功,这意味着蛋白质的构象变化引发的光吸收控制所观察到的动力学,而不是一个静态的两个潜在的表面之间的障碍交叉。 这项工作提出了几个需要回答的重要问题。 首先,蛋白质运动的性质和280 nm处的光谱信号(似乎是这种运动的探针)尚不清楚。 目前假设这是由于色氨酸残基响应蛋白质环境的变化而引起的,但这仍有待证明。第二,更详细的机制探索蛋白质松弛和电子转移之间的关系是必要的。 这个新的模型提供了一个机会,以确定重组能量,驱动力和耦合作为温度的函数的整个系列的突变体,导致在一个更完整的机械图片的初始光合电子转移比以往任何时候都可用。 最后,这项工作将与目前的定向进化方法相结合,以产生沿着通常未使用的辅因子途径(B侧)进行高产电子转移的突变体。 一组非常相似的研究作为驱动力和温度的函数,然后将在这些突变体上进行,以探索两种电子转移途径之间的机制相似性和差异。PI参与扩大研究生和本科生层面的跨学科研究。 PI有七名本科生与他一起工作,其中两名直接参与这个项目。 此外,光合作用研究中涉及的概念被用来丰富他在物理化学和生物化学方面的教学。 例如,PI教授生物纳米技术课程,作为亚利桑那州立大学学习社区项目的一部分,学生们探索纳米技术的科学,政策和社会学。 PI也是NSF IGERT生物分子纳米技术项目的负责人。 光合反应中心是纳米级光电器件的一个重要例子,这项工作的概念是IGERT学生研究的生物分子纳米技术的关键例子之一。 PI也是ASU生物能源研究计划的现任主任,该计划是从ASU光合作用中心发展出来的一项新计划,旨在利用我们对光合作用过程的不断了解,并将其用于开发新能源和能量转换手段。 最后,PI指导生物设计研究所的生物光学纳米技术中心。 在这个角色中,他直接与大量的私人,商业和公民团体进行交流,这些讨论构成了社区嵌入式研究的新方法的基础,其中社会的需求和发现的过程被整合到跨学科研究的新混合模式中。该项目由生物科学理事会分子和细胞生物科学部的分子生物物理学和数学和物理科学理事会化学部的实验物理化学计划共同支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Neal Woodbury其他文献
Quantum Dot-based Fluorescence Resonance Energy Transfer through Exciton Dynamics in DNA-Templated J-Aggregates
- DOI:
10.1016/j.bpj.2017.11.2857 - 发表时间:
2018-02-02 - 期刊:
- 影响因子:
- 作者:
Sarthak Mandal;Xu Zhou;Nour Eddine Fahmi;Su Lin;Hao Yan;Neal Woodbury - 通讯作者:
Neal Woodbury
Orchestrating Cloud-supported Workspaces for a Computational Biochemistry Course at Large Scale
为大规模计算生物化学课程编排云支持的工作空间
- DOI:
10.22369/issn.2153-4136/14/2/7 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Gil Speyer;Neal Woodbury;Arun Neelicattu;Aaron Peterson;Greg Schwimer;George Slessman - 通讯作者:
George Slessman
Neal Woodbury的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Neal Woodbury', 18)}}的其他基金
Prevalence of Immune Response for Ebola in the Endemic Populations
流行人群中埃博拉免疫反应的发生率
- 批准号:
1518528 - 财政年份:2014
- 资助金额:
$ 117.13万 - 项目类别:
Standard Grant
Protein Dynamics in Electron Transfer
电子转移中的蛋白质动力学
- 批准号:
1157788 - 财政年份:2012
- 资助金额:
$ 117.13万 - 项目类别:
Continuing Grant
INSPIRE: Mimicking the Functional Complexity of Biology with Man-Made Systems
INSPIRE:用人造系统模仿生物学的功能复杂性
- 批准号:
1243082 - 财政年份:2012
- 资助金额:
$ 117.13万 - 项目类别:
Standard Grant
The Assembly of Photosynthetic Light-Harvesting Complexes in Whole Cells
全细胞中光合光捕获复合物的组装
- 批准号:
1057827 - 财政年份:2011
- 资助金额:
$ 117.13万 - 项目类别:
Standard Grant
Enzymology of multi-enzyme systems on self-assembled surfaces
自组装表面多酶系统的酶学
- 批准号:
1033222 - 财政年份:2010
- 资助金额:
$ 117.13万 - 项目类别:
Standard Grant
The Topology of Peptide/Protein Interaction Space
肽/蛋白质相互作用空间的拓扑
- 批准号:
0940914 - 财政年份:2009
- 资助金额:
$ 117.13万 - 项目类别:
Standard Grant
"SGER: Merging Single Molecule Spectroscopy and Molecular Simulation".
“SGER:合并单分子光谱学和分子模拟”。
- 批准号:
0631631 - 财政年份:2006
- 资助金额:
$ 117.13万 - 项目类别:
Standard Grant
Characterization of DNA/Protein Interactions at the Single Molecule Level
单分子水平 DNA/蛋白质相互作用的表征
- 批准号:
0239986 - 财政年份:2003
- 资助金额:
$ 117.13万 - 项目类别:
Continuing Grant
Controlling the Pathway of Electron Transfer in Bacterial Reaction Centers
控制细菌反应中心的电子转移途径
- 批准号:
0131776 - 财政年份:2002
- 资助金额:
$ 117.13万 - 项目类别:
Continuing Grant
IGERT: Optical Biomolecular Devices: From Natural Paradigms to Practical Applications
IGERT:光学生物分子器件:从自然范例到实际应用
- 批准号:
0114434 - 财政年份:2001
- 资助金额:
$ 117.13万 - 项目类别:
Continuing Grant
相似国自然基金
Cortical control of internal state in the insular cortex-claustrum region
- 批准号:
- 批准年份:2020
- 资助金额:25 万元
- 项目类别:
相似海外基金
Structure-control of valence electron isomerism in the f-block
f-嵌段中价电子异构的结构控制
- 批准号:
EP/Y006534/1 - 财政年份:2024
- 资助金额:
$ 117.13万 - 项目类别:
Research Grant
Control of the electron-lattice strongly-coupled system by ultrahigh magnetic fields
超高磁场对电子晶格强耦合系统的控制
- 批准号:
23H01117 - 财政年份:2023
- 资助金额:
$ 117.13万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Computational prediction of hot-electron chemistry: Towards electronic control of catalysis
热电子化学的计算预测:迈向催化的电子控制
- 批准号:
MR/X023109/1 - 财政年份:2023
- 资助金额:
$ 117.13万 - 项目类别:
Fellowship
Control theory of photo-induced dynamics in correlated electron systems utilizing phonon-excitation
利用声子激发的相关电子系统光致动力学控制理论
- 批准号:
23KJ0883 - 财政年份:2023
- 资助金额:
$ 117.13万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Strong electron correlations in quantum chemistry: new approaches from machine learning, quantum computing and time-dependent quantum control
量子化学中的强电子相关性:机器学习、量子计算和瞬态量子控制的新方法
- 批准号:
RGPIN-2020-04306 - 财政年份:2022
- 资助金额:
$ 117.13万 - 项目类别:
Discovery Grants Program - Individual
Active control of fracture and strength for oxide materials using electron beam induced quantum dot array
使用电子束诱导量子点阵列主动控制氧化物材料的断裂和强度
- 批准号:
22H01819 - 财政年份:2022
- 资助金额:
$ 117.13万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Ultrafast femtosecond laser control of electron dynamics in two-dimensional strong spin-orbit coupling materials
二维强自旋轨道耦合材料中电子动力学的超快飞秒激光控制
- 批准号:
22K13991 - 财政年份:2022
- 资助金额:
$ 117.13万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ERI: Thermal Assisted Plasmon-Plasmon interaction for active control of Electron Density Waves at Metal Semiconductor Interfaces - A Roadmap to Novel All-Optical Devices
ERI:热辅助等离子体激元-等离子体激元相互作用,用于主动控制金属半导体界面处的电子密度波 - 新型全光器件的路线图
- 批准号:
2138198 - 财政年份:2022
- 资助金额:
$ 117.13万 - 项目类别:
Standard Grant
Development and control of electron-correlated oligomer molecular conductors
电子关联低聚物分子导体的开发与控制
- 批准号:
22H00106 - 财政年份:2022
- 资助金额:
$ 117.13万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Ultrafast Electron Scattering to Understand and Control Material Properties
通过超快电子散射了解和控制材料特性
- 批准号:
RGPIN-2019-06001 - 财政年份:2022
- 资助金额:
$ 117.13万 - 项目类别:
Discovery Grants Program - Individual