AF: EAGER: Bayesian Factor Modeling of Context-Specific Gene Regulation
AF:EAGER:上下文特定基因调控的贝叶斯因子建模
基本信息
- 批准号:1246073
- 负责人:
- 金额:$ 29.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-08-01 至 2015-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Response of cells to their changing environment is governed by intricate regulations of gene expression by regulating molecules in cells including, most importantly, transcription factors (TFs) and microRNAs (miRNAs). Understanding how TF and miRNA regulations define cellular states such as cell survival, cell proliferation, and cell death, and eventually phenotypes including various diseases is a major challenge facing computational systems biologists. Intellectual Merit This EAGER project will develop and validate a novel computational model called Semi-parametric Bayesian FActor Regulatory Model (SB-FARM) for TF and miRNA regulation of gene expression. The advantages of SB-FARM over other existing models are that it integrates existing knowledge about gene regulations in the model and enables the discovery of specific regulations by TFs and miRNAs under unmeasured conditions or contexts. The investigators will examine the modeling details as well as algorithms for reconstructing the model from a set of gene expression data. They will apply SB-FARM to study the context-specific regulations in E-coli and human cancer. The long term goal of the investigators is to develop signal processing and statistical learning methods for the system-level understanding of gene regulatory networks underlying different biological processes and apply them to better understand the genomic basis for diversity in organisms and development of diseases. The SB-FARM has a general structure that permits integration of additional aspects of gene regulation. The success of the SB-FARM will have long lasting impact on gene regulation research and is expected to also significantly advance statistical signal processing and Bayesian learning.Broader Impact This research is highly interdisciplinary, cross-cutting science and engineering. It will provide an environment for advanced interdisciplinary learning and education in the area of genomics signal processing and computational biology. The PIs will also actively involve graduate and undergraduate students in research activities. Particularly, they will utilize the minority institution status of UTSA and UTHSCSA to recruit and involve minority students in this research. The developed computational methods will be implemented into publically available software to aid computational biology researchers to investigate context specific gene regulations. The computational methods and tools will enhance the signal processing and machine learning research and ultimately lead to development of new theory and methods.
细胞对环境变化的反应是由复杂的基因表达调控所控制的,调控分子包括细胞中最重要的转录因子(TFs)和microrna (miRNAs)。理解TF和miRNA调控如何定义细胞状态,如细胞存活、细胞增殖和细胞死亡,以及最终包括各种疾病在内的表型,是计算系统生物学家面临的主要挑战。该EAGER项目将开发并验证一种称为半参数贝叶斯因子调控模型(SB-FARM)的新型计算模型,用于TF和miRNA对基因表达的调控。SB-FARM相对于其他现有模型的优势在于,它在模型中整合了有关基因调控的现有知识,并能够在未测量的条件或背景下发现tf和mirna的特定调控。研究人员将检查建模细节以及从一组基因表达数据重建模型的算法。他们将应用SB-FARM来研究大肠杆菌和人类癌症的具体情况。研究人员的长期目标是开发信号处理和统计学习方法,用于系统级理解不同生物过程背后的基因调控网络,并将其应用于更好地理解生物多样性和疾病发展的基因组基础。SB-FARM具有允许整合基因调控其他方面的一般结构。SB-FARM的成功将对基因调控研究产生持久的影响,并有望显著推进统计信号处理和贝叶斯学习。本研究是高度跨学科、跨领域的科学与工程。它将为基因组学、信号处理和计算生物学领域的高级跨学科学习和教育提供一个环境。pi还将积极地让研究生和本科生参与研究活动。特别是,他们将利用UTSA和UTHSCSA的少数民族机构地位来招募少数民族学生并让他们参与这项研究。开发的计算方法将被实施到公共软件中,以帮助计算生物学研究人员调查特定环境的基因调控。计算方法和工具将加强信号处理和机器学习的研究,并最终导致新的理论和方法的发展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yufei Huang其他文献
Multivesicular bodies containing exosomes in immune-related cells of the intestine in zebrafish (Danio rerio)
斑马鱼(Danio rerio)肠道免疫相关细胞中含有外泌体的多泡体
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:4.7
- 作者:
Xuebing Bai;Yonghong Shi;Imran Tarique;Waseem Ali Vistro;Yufei Huang;Hong Chen;Abdul Haseeb;Noor Samad G;ahi;Ping Yang;Qiusheng Chena - 通讯作者:
Qiusheng Chena
Dendritic cells in the cerebrospinal fluid and peripheral nerves in Guillain-Barré syndrome and chronic inflammatory demyelinating polyradiculoneuropathy
吉兰-巴利综合征和慢性炎症性脱髓鞘性多发性神经根神经病脑脊液和周围神经中的树突状细胞
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:3.3
- 作者:
R. Press;I. Nennesmo;M. Kouwenhoven;Yufei Huang;M. Pashenkov - 通讯作者:
M. Pashenkov
Uncovering gene regulatory networks using variational Bayes variable selection
使用变分贝叶斯变量选择揭示基因调控网络
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
I.T. Luna;Yufang Yin;Yufei Huang;D. Padillo;M. Perez - 通讯作者:
M. Perez
A SVM based approach for miRNA target prediction
基于 SVM 的 miRNA 靶标预测方法
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Hui Liu;Dong Yue;Lin Zhang;Yufei Huang - 通讯作者:
Yufei Huang
Spectral properties of p-Sombor matrices and beyond
p-Sombor 矩阵及其他矩阵的光谱特性
- DOI:
10.46793/match.87-1.059l - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Hechao Liu;L. You;Yufei Huang;Xiaona Fang - 通讯作者:
Xiaona Fang
Yufei Huang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yufei Huang', 18)}}的其他基金
Promoting Student Participation in IEEE Conference on Biomedical and Health Informatics
促进学生参与 IEEE 生物医学和健康信息学会议
- 批准号:
1821990 - 财政年份:2018
- 资助金额:
$ 29.69万 - 项目类别:
Standard Grant
2016 Workshop on Bioinformatics for Precision
2016精准生物信息学研讨会
- 批准号:
1632826 - 财政年份:2016
- 资助金额:
$ 29.69万 - 项目类别:
Standard Grant
GENSIPS'12 Conference: Fostering Interdisciplinary Research and Education in Computational Biology
GENSIPS12 会议:促进计算生物学的跨学科研究和教育
- 批准号:
1246395 - 财政年份:2012
- 资助金额:
$ 29.69万 - 项目类别:
Standard Grant
CAREER: Bayesian Signal Processing for Uncovering Gene Regulatory Networks
职业:贝叶斯信号处理揭示基因调控网络
- 批准号:
0546345 - 财政年份:2005
- 资助金额:
$ 29.69万 - 项目类别:
Continuing Grant
相似海外基金
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
- 批准号:
2333604 - 财政年份:2024
- 资助金额:
$ 29.69万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
- 批准号:
2347624 - 财政年份:2024
- 资助金额:
$ 29.69万 - 项目类别:
Standard Grant
EAGER: Innovation in Society Study Group
EAGER:社会创新研究小组
- 批准号:
2348836 - 财政年份:2024
- 资助金额:
$ 29.69万 - 项目类别:
Standard Grant
EAGER: Artificial Intelligence to Understand Engineering Cultural Norms
EAGER:人工智能理解工程文化规范
- 批准号:
2342384 - 财政年份:2024
- 资助金额:
$ 29.69万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
- 批准号:
2344215 - 财政年份:2024
- 资助金额:
$ 29.69万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345581 - 财政年份:2024
- 资助金额:
$ 29.69万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345582 - 财政年份:2024
- 资助金额:
$ 29.69万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345583 - 财政年份:2024
- 资助金额:
$ 29.69万 - 项目类别:
Standard Grant
EAGER: Accelerating decarbonization by representing catalysts with natural language
EAGER:通过用自然语言表示催化剂来加速脱碳
- 批准号:
2345734 - 财政年份:2024
- 资助金额:
$ 29.69万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 29.69万 - 项目类别:
Standard Grant