RTG: Algebraic Geometry and Topology at the University of Utah

RTG:犹他大学代数几何和拓扑

基本信息

  • 批准号:
    1246989
  • 负责人:
  • 金额:
    $ 243.12万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-06-01 至 2020-05-31
  • 项目状态:
    已结题

项目摘要

This grants provides support for a number of new training activities hosted by the Department of Mathematics of the University of Utah. There will be 5 courses on Modern Mathematics addressed to undergraduate students: 2 of them will be two-week long summer courses, the other 3 will be semester long classes offered during the Fall semester. Undergraduate students will also have the opportunity to work on independent research projects during the Spring semester. At the graduate level, there will be 3 advanced summer mini-courses, each 2 weeks long, with speakers coming from around the country and abroad. Other activities include various types of seminars. There will be vertical integration in these activities among faculty, postdocs and students. Activities will cover the span of the 5 academic years during the funding period, plus a total of 10 summer weeks. The grant will support directly 6 undergraduate students in one-semester long independent research projects, 25 eleven-month graduate student stipends, and 9 postdoctoral fellows to be partially supported by the grant with the remaining support coming from the department. The grant will also provide support for about 50 undergraduates and 60 graduate students during the summers schools, and cover tuition for the semester-long courses in Modern Mathematics for 30 undergraduate students. This research training is designed to provide students and postdocs a high level of mathematical training. The faculty in the Algebraic Geometry and Topology groups at the University of Utah has a prominent research record, and the grant will support bringing the graduate and postdoctoral program to the same level. The grant will also strengthen the already close connections between the two groups. The various activities, especially the summer mini-courses, will serve to attract talented students to come to Utah, either as graduate students or as postdoctoral associates. This program will impact young mathematical scientists at the undergraduate, graduate, and postdoctoral levels, and will provide an environment which will stimulate collaboration across levels and across fields. The program will have a deep impact also in the training of our senior graduate students and postdocs into becoming effective, motivated teachers and mentors. As they grow into mature mathematicians, this will have a long-lasting effect well beyond our local environment and the duration of the grant.
这笔赠款为犹他州大学数学系主办的一些新的培训活动提供支持。将有5门现代数学课程给本科生:其中2门将是为期两周的夏季课程,其他3门将是秋季学期提供的学期课程。本科生也将有机会在春季学期从事独立的研究项目。在研究生阶段,将有3个高级夏季迷你课程,每个为期2周,演讲者来自全国各地和国外。其他活动包括各类研讨会。在这些活动中,教师、博士后和学生之间将进行纵向整合。活动将涵盖资助期间的5个学年,加上总共10个夏季周。该补助金将直接支持6名本科生在一个学期长的独立研究项目,25个11个月的研究生奖学金,和9名博士后研究员将部分由补助金支持,其余的支持来自该部门。这笔赠款还将在暑期学校为大约50名本科生和60名研究生提供支持,并支付30名本科生现代数学学期课程的学费。 这项研究培训旨在为学生和博士后提供高水平的数学培训。犹他州大学的代数几何和拓扑小组的教师有着突出的研究记录,这笔赠款将支持将研究生和博士后项目提高到同一水平。这笔赠款还将加强两个群体之间已经密切的联系。各种活动,特别是夏季迷你课程,将有助于吸引有才华的学生来到犹他州,无论是作为研究生或博士后助理。该计划将影响年轻的数学科学家在本科,研究生和博士后水平,并将提供一个环境,这将刺激跨层次和跨领域的合作。该计划也将对我们的高年级研究生和博士后的培训产生深远的影响,使他们成为有效,积极的教师和导师。随着他们成长为成熟的数学家,这将产生长期的影响,远远超出我们当地的环境和赠款的持续时间。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kenneth Bromberg其他文献

Tameness on the boundary and Ahlfors’ measure conjecture
  • DOI:
    10.1007/s10240-003-0018-y
  • 发表时间:
    2003-12-01
  • 期刊:
  • 影响因子:
    3.500
  • 作者:
    Jeffrey Brock;Kenneth Bromberg;Richard Evans;Juan Souto
  • 通讯作者:
    Juan Souto
emL/emsup2/sup-bounds for drilling short geodesics in convex co-compact hyperbolic 3-manifolds
凸共紧双曲 3 维流形中短测地线钻探的 emL/emsup2/sup 界
  • DOI:
    10.1016/j.aim.2024.109804
  • 发表时间:
    2024-08-01
  • 期刊:
  • 影响因子:
    1.500
  • 作者:
    Martin Bridgeman;Kenneth Bromberg
  • 通讯作者:
    Kenneth Bromberg
Pneumococcal C and type polysaccharide detection in the concentrated urine of patients with bacteremia
  • DOI:
    10.1007/bf00189611
  • 发表时间:
    1990-12-01
  • 期刊:
  • 影响因子:
    3.000
  • 作者:
    Kenneth Bromberg;Gaylene Tannis;Alma Rodgers
  • 通讯作者:
    Alma Rodgers
Congenital syphilis: detection of Treponema pallidum in stillborns.
先天性梅毒:死产中梅毒螺旋体的检测。
ACQUIRED IMMUNE DEFICIENCY SYNDROME IN FAMILIES
家庭中获得性免疫缺陷综合征
  • DOI:
    10.1203/00006450-198404001-01062
  • 发表时间:
    1984-04-01
  • 期刊:
  • 影响因子:
    3.100
  • 作者:
    Kenneth Bromberg;Senih Fikrig;Edward Kang;Hermann Mendez;Margaret Hauerschlag
  • 通讯作者:
    Margaret Hauerschlag

Kenneth Bromberg的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kenneth Bromberg', 18)}}的其他基金

Hyperbolic Geometry and the Mapping Class Group
双曲几何和映射类组
  • 批准号:
    1906095
  • 财政年份:
    2019
  • 资助金额:
    $ 243.12万
  • 项目类别:
    Standard Grant
Conference on Aspects of Non-Positive and Negative Curvature in Group Theory
群论中非正曲率和负曲率方面的会议
  • 批准号:
    1856388
  • 财政年份:
    2019
  • 资助金额:
    $ 243.12万
  • 项目类别:
    Standard Grant
International Conference in Geometric Topology
几何拓扑国际会议
  • 批准号:
    1719746
  • 财政年份:
    2017
  • 资助金额:
    $ 243.12万
  • 项目类别:
    Standard Grant
Hyperbolic geometry and mapping class groups
双曲几何和映射类组
  • 批准号:
    1509171
  • 财政年份:
    2015
  • 资助金额:
    $ 243.12万
  • 项目类别:
    Continuing Grant
Conference Proposal - Rigidity and Flexibility in Dimensions 2, 3 and 4
会议提案——维度2、3、4的刚性和灵活性
  • 批准号:
    1211355
  • 财政年份:
    2012
  • 资助金额:
    $ 243.12万
  • 项目类别:
    Standard Grant
Research in hyperbolic geometry and mapping class groups
双曲几何与映射类群研究
  • 批准号:
    1207873
  • 财政年份:
    2012
  • 资助金额:
    $ 243.12万
  • 项目类别:
    Standard Grant
Hyperbolic geometry in dimensions 2 and 3
2 维和 3 维双曲几何
  • 批准号:
    0906118
  • 财政年份:
    2009
  • 资助金额:
    $ 243.12万
  • 项目类别:
    Standard Grant
Focused Research Group: Collaborative Research: Geometry and Deformation Theory of Hyperbolic 3-Manifolds
重点研究组:合作研究:双曲3流形的几何与变形理论
  • 批准号:
    0554569
  • 财政年份:
    2006
  • 资助金额:
    $ 243.12万
  • 项目类别:
    Standard Grant
Spaces of Hyperbolic 3-Manifolds
双曲 3-流形空间
  • 批准号:
    0504877
  • 财政年份:
    2005
  • 资助金额:
    $ 243.12万
  • 项目类别:
    Standard Grant
Deformation Spaces of Hyperbolic 3-manifolds
双曲3流形的变形空间
  • 批准号:
    0406976
  • 财政年份:
    2003
  • 资助金额:
    $ 243.12万
  • 项目类别:
    Standard Grant

相似国自然基金

同伦和Hodge理论的方法在Algebraic Cycle中的应用
  • 批准号:
    11171234
  • 批准年份:
    2011
  • 资助金额:
    40.0 万元
  • 项目类别:
    面上项目

相似海外基金

Conference: Latin American School of Algebraic Geometry
会议:拉丁美洲代数几何学院
  • 批准号:
    2401164
  • 财政年份:
    2024
  • 资助金额:
    $ 243.12万
  • 项目类别:
    Standard Grant
Conference: Collaborative Workshop in Algebraic Geometry
会议:代数几何合作研讨会
  • 批准号:
    2333970
  • 财政年份:
    2024
  • 资助金额:
    $ 243.12万
  • 项目类别:
    Standard Grant
Conference: Texas Algebraic Geometry Symposium (TAGS) 2024-2026
会议:德克萨斯代数几何研讨会 (TAGS) 2024-2026
  • 批准号:
    2349244
  • 财政年份:
    2024
  • 资助金额:
    $ 243.12万
  • 项目类别:
    Continuing Grant
Conference: CAAGTUS (Commutative Algebra and Algebraic Geometry in TUcSon)
会议:CAAGTUS(TUcSon 中的交换代数和代数几何)
  • 批准号:
    2412921
  • 财政年份:
    2024
  • 资助金额:
    $ 243.12万
  • 项目类别:
    Standard Grant
Algebraic Geometry and Strings
代数几何和弦
  • 批准号:
    2401422
  • 财政年份:
    2024
  • 资助金额:
    $ 243.12万
  • 项目类别:
    Continuing Grant
Conference: Higher dimensional algebraic geometry
会议:高维代数几何
  • 批准号:
    2327037
  • 财政年份:
    2023
  • 资助金额:
    $ 243.12万
  • 项目类别:
    Standard Grant
Conference: AGNES Summer School in Algebraic Geometry
会议:AGNES 代数几何暑期学校
  • 批准号:
    2312088
  • 财政年份:
    2023
  • 资助金额:
    $ 243.12万
  • 项目类别:
    Standard Grant
Algebraic Geometry of Hitchin Integrable Systems and Beyond
希钦可积系统及其他代数几何
  • 批准号:
    2301474
  • 财政年份:
    2023
  • 资助金额:
    $ 243.12万
  • 项目类别:
    Continuing Grant
CAREER: Birational Geometry and K-stability of Algebraic Varieties
职业:双有理几何和代数簇的 K 稳定性
  • 批准号:
    2234736
  • 财政年份:
    2023
  • 资助金额:
    $ 243.12万
  • 项目类别:
    Continuing Grant
Algebraic complexity theory via the algebraic geometry and representation theory of generalised continued fractions
通过代数几何和广义连分数表示论的代数复杂性理论
  • 批准号:
    EP/W014882/2
  • 财政年份:
    2023
  • 资助金额:
    $ 243.12万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了