Conference on Aspects of Non-Positive and Negative Curvature in Group Theory
群论中非正曲率和负曲率方面的会议
基本信息
- 批准号:1856388
- 负责人:
- 金额:$ 3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-06-01 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award provides partial support for participation by US-based mathematicians at an international conference on geometric group theory to be held at the CIRM (Centre International de Rencontres Mathematiques) in Luminy, France from June 17-21 of 2019. The conference will bring together a diverse group of approximately 120 mathematicians from the US, Europe and Asia. Along with twenty-two plenary lectures there will be a session of lightning talks where early career mathematicians will have the chance to present their work. This award will support the attendance of approximately 30 US-based mathematicians at the conference. Geometric group theory is a relatively recently recognized subfield of mathematics emerging from Gromov's work in the 1980s, which put the classical treatment of groups as geometric objects in a far broader context. The field is now quite large, and has interactions with many different fields of mathematics including low-dimensional topology, the topology of manifolds, complex dynamics, combinatorial group theory, logic and the study of various classical families of groups. The central idea of geometric group theory is to study a group through an action (typically an isometric one) on some space (typically a metric space) and then use properties of the space to deduce properties of the group. Perhaps the most successful instance of this is when the space has some form of negative curvature. While classically curvature is a concept of Riemannian geometry, another central insight of Gromov is that many properties of spaces of negative curvature in Riemannian geometry have "coarse" analogues and that this is the natural setting to study the geometry of groups. The study of groups that act on spaces with coarse versions of non-positive and negative curvature will be the focus of this week long conference. More information on the conference can be found at https://conferences.cirm-math.fr/1958.html.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项为美国数学家参加将于2019年6月17日至21日在法国Luminy的CIRM(国际数学中心)举行的几何群论国际会议提供部分支持。会议将汇集来自美国,欧洲和亚洲的约120名数学家。沿着22个全体讲座将有一个会议的闪电会谈,早期的职业数学家将有机会提出他们的工作。该奖项将支持大约30名美国数学家出席会议。几何群论(英语:Geometric group theory)是一个相对较新被认可的数学分支,源自格罗莫夫在1980年代的工作,它将群作为几何对象的经典处理置于更广泛的背景下。该领域现在相当大,并与许多不同的数学领域,包括低维拓扑,流形拓扑,复杂动力学,组合群论,逻辑和各种经典群族的研究相互作用。几何群论的中心思想是通过在某个空间(通常是度量空间)上的作用(通常是等距作用)来研究群,然后利用空间的性质来推导群的性质。也许最成功的例子是当空间具有某种形式的负曲率时。虽然经典曲率是黎曼几何的一个概念,但格罗莫夫的另一个核心观点是,黎曼几何中负曲率空间的许多性质都有“粗糙”的类似物,这是研究几何群的自然环境。对作用于具有非正曲率和负曲率的粗糙版本的空间的群的研究将是本周会议的重点。关于会议的更多信息可以在www.example.com上找到https://conferences.cirm-math.fr/1958.html.This奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kenneth Bromberg其他文献
Tameness on the boundary and Ahlfors’ measure conjecture
- DOI:
10.1007/s10240-003-0018-y - 发表时间:
2003-12-01 - 期刊:
- 影响因子:3.500
- 作者:
Jeffrey Brock;Kenneth Bromberg;Richard Evans;Juan Souto - 通讯作者:
Juan Souto
emL/emsup2/sup-bounds for drilling short geodesics in convex co-compact hyperbolic 3-manifolds
凸共紧双曲 3 维流形中短测地线钻探的 emL/emsup2/sup 界
- DOI:
10.1016/j.aim.2024.109804 - 发表时间:
2024-08-01 - 期刊:
- 影响因子:1.500
- 作者:
Martin Bridgeman;Kenneth Bromberg - 通讯作者:
Kenneth Bromberg
Pneumococcal C and type polysaccharide detection in the concentrated urine of patients with bacteremia
- DOI:
10.1007/bf00189611 - 发表时间:
1990-12-01 - 期刊:
- 影响因子:3.000
- 作者:
Kenneth Bromberg;Gaylene Tannis;Alma Rodgers - 通讯作者:
Alma Rodgers
Congenital syphilis: detection of Treponema pallidum in stillborns.
先天性梅毒:死产中梅毒螺旋体的检测。
- DOI:
10.1093/clinids/24.1.24 - 发表时间:
1997 - 期刊:
- 影响因子:0
- 作者:
S. Rawstron;J. Vetrano;G. Tannis;Kenneth Bromberg - 通讯作者:
Kenneth Bromberg
LYMPHOCYTE POPULATION AND FUNCTION IN PERTUSSIS
百日咳中淋巴细胞群体和功能
- DOI:
10.1203/00006450-198404001-00996 - 发表时间:
1984-04-01 - 期刊:
- 影响因子:3.100
- 作者:
Edward Kong;Senih M Fikrig;Rajendra N Pahwa;Kenneth Bromberg - 通讯作者:
Kenneth Bromberg
Kenneth Bromberg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kenneth Bromberg', 18)}}的其他基金
Hyperbolic Geometry and the Mapping Class Group
双曲几何和映射类组
- 批准号:
1906095 - 财政年份:2019
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
International Conference in Geometric Topology
几何拓扑国际会议
- 批准号:
1719746 - 财政年份:2017
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
Hyperbolic geometry and mapping class groups
双曲几何和映射类组
- 批准号:
1509171 - 财政年份:2015
- 资助金额:
$ 3万 - 项目类别:
Continuing Grant
RTG: Algebraic Geometry and Topology at the University of Utah
RTG:犹他大学代数几何和拓扑
- 批准号:
1246989 - 财政年份:2013
- 资助金额:
$ 3万 - 项目类别:
Continuing Grant
Conference Proposal - Rigidity and Flexibility in Dimensions 2, 3 and 4
会议提案——维度2、3、4的刚性和灵活性
- 批准号:
1211355 - 财政年份:2012
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
Research in hyperbolic geometry and mapping class groups
双曲几何与映射类群研究
- 批准号:
1207873 - 财政年份:2012
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
Hyperbolic geometry in dimensions 2 and 3
2 维和 3 维双曲几何
- 批准号:
0906118 - 财政年份:2009
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
Focused Research Group: Collaborative Research: Geometry and Deformation Theory of Hyperbolic 3-Manifolds
重点研究组:合作研究:双曲3流形的几何与变形理论
- 批准号:
0554569 - 财政年份:2006
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
Deformation Spaces of Hyperbolic 3-manifolds
双曲3流形的变形空间
- 批准号:
0406976 - 财政年份:2003
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
相似国自然基金
基于构件软件的面向可靠安全Aspects建模和一体化开发方法研究
- 批准号:60503032
- 批准年份:2005
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Statistical aspects of non-linear inverse problems
非线性反问题的统计方面
- 批准号:
EP/Y030249/1 - 财政年份:2024
- 资助金额:
$ 3万 - 项目类别:
Research Grant
Non-perturbative aspects of three-dimensional quantum gravity
三维量子引力的非微扰方面
- 批准号:
2882187 - 财政年份:2023
- 资助金额:
$ 3万 - 项目类别:
Studentship
Conference: Motivic and non-commutative aspects of enumerative geometry, Homotopy theory, K-theory, and trace methods
会议:计数几何的本构和非交换方面、同伦理论、K 理论和迹方法
- 批准号:
2328867 - 财政年份:2023
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
Geometric aspects of the free-fermion and the non-commutative Schur functions
自由费米子和非交换 Schur 函数的几何方面
- 批准号:
23K03056 - 财政年份:2023
- 资助金额:
$ 3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Domain Walls, Confinement, and Other Non-Perturbative Aspects of Yang-Mills Theory
域壁、限制和杨米尔斯理论的其他非微扰方面
- 批准号:
559071-2021 - 财政年份:2022
- 资助金额:
$ 3万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Large-N analysis of irrelevant deformations of quantum field theory and their non-perturbative aspects
量子场论的不相关变形及其非微扰方面的大 N 分析
- 批准号:
21J14825 - 财政年份:2021
- 资助金额:
$ 3万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Domain Walls, Confinement, and Other Non-Perturbative Aspects of Yang-Mills Theory
域壁、限制和杨米尔斯理论的其他非微扰方面
- 批准号:
559071-2021 - 财政年份:2021
- 资助金额:
$ 3万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Quantum graph aspects for graphene and carbon nanotube in non-uniform fields
非均匀场中石墨烯和碳纳米管的量子图方面
- 批准号:
21K03273 - 财政年份:2021
- 资助金额:
$ 3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Non-perturbative aspects of quantum field theories from integrability
量子场论的可积性的非微扰方面
- 批准号:
20J10126 - 财政年份:2020
- 资助金额:
$ 3万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Establishing key aspects of non-drilling carious treatments based on quantum and X-ray beam technologies
基于量子和 X 射线束技术确定非钻孔龋齿治疗的关键方面
- 批准号:
20H00552 - 财政年份:2020
- 资助金额:
$ 3万 - 项目类别:
Grant-in-Aid for Scientific Research (A)














{{item.name}}会员




