CSR: EAGER: An Integrated Framework for Performance and Reliability in Large-scaled Computing Systems

CSR:EAGER:大规模计算系统性能和可靠性的集成框架

基本信息

  • 批准号:
    1251129
  • 负责人:
  • 金额:
    $ 27.24万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-09-01 至 2014-08-31
  • 项目状态:
    已结题

项目摘要

Large-scale computing environments such as data centers and cloud computing are becoming the core computing infrastructure, making the availability of such services extremely critical. However, these environments are increasingly vulnerable to both hardware and software failures. This project designs failure-aware techniques for modeling, prediction, and resource management in large-scale computing environments with the presence of hardware and software failures at various levels. Intellectually, this project develops fundamental understanding of workload and reliability characteristics, and investigates how improved capacity planning models and prediction techniques can obtain useful information for system design and maintenance. This project further provides insights of the impact of software/hardware component failures in the area of resource management. The results of this project will include new capacity planning models that evaluate both reliability and performance of a given system and new prediction techniques that forecast the future failure occurrences by taking advantage of temporal dependence in failure events. Based on the modeling and prediction techniques, this project will develop new failure-aware runtime strategies for job scheduling, node allocation, and system maintenance, aiming to achieve high system performance and reliability in complex large scale systems.
数据中心和云计算等大规模计算环境正在成为核心计算基础设施,这使得此类服务的可用性变得至关重要。然而,这些环境越来越容易受到硬件和软件故障的影响。该项目设计了故障感知技术,用于在存在各种级别的硬件和软件故障的大规模计算环境中进行建模,预测和资源管理。在智力上,该项目开发的工作负载和可靠性特性的基本理解,并研究如何改进的容量规划模型和预测技术可以获得有用的信息,系统的设计和维护。该项目进一步提供了在资源管理领域的软件/硬件组件故障的影响的见解。该项目的结果将包括新的容量规划模型,评估给定系统的可靠性和性能,以及新的预测技术,通过利用故障事件的时间依赖性来预测未来的故障发生。基于建模和预测技术,本项目将开发新的故障感知运行时策略,用于作业调度,节点分配和系统维护,旨在实现复杂大型系统的高系统性能和可靠性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ningfang Mi其他文献

Load balancing for cluster systems under heavy-tailed and temporal dependent workloads
  • DOI:
    10.1016/j.simpat.2014.03.006
  • 发表时间:
    2014-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Jianzhe Tai;Zhen Li;Jiahui Chen;Ningfang Mi
  • 通讯作者:
    Ningfang Mi
A regression-based analytic model for capacity planning of multi-tier applications
Performance impacts of autocorrelated flows in multi-tiered systems

Ningfang Mi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ningfang Mi', 18)}}的其他基金

Collaborative Research: CNS core: OAC core: Small: New Techniques for I/O Behavior Modeling and Persistent Storage Device Configuration
合作研究: CNS 核心:OAC 核心:小型:I/O 行为建模和持久存储设备配置新技术
  • 批准号:
    2008072
  • 财政年份:
    2020
  • 资助金额:
    $ 27.24万
  • 项目类别:
    Standard Grant
CAREER: Capacity Planning Methodologies for Large Clusters with Heterogeneous Architectures and Diverse Applications
职业:异构架构和多样化应用的大型集群的容量规划方法
  • 批准号:
    1452751
  • 财政年份:
    2015
  • 资助金额:
    $ 27.24万
  • 项目类别:
    Continuing Grant

相似海外基金

Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
  • 批准号:
    2409395
  • 财政年份:
    2024
  • 资助金额:
    $ 27.24万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
  • 批准号:
    2409396
  • 财政年份:
    2024
  • 资助金额:
    $ 27.24万
  • 项目类别:
    Standard Grant
EAGER: Flexible and compressible e-Skin integrated with soft magnetic coil based ultra-thin actuator and touch sensor for robotics applications
EAGER:灵活且可压缩的电子皮肤与基于软磁线圈的超薄执行器和触摸传感器集成,适用于机器人应用
  • 批准号:
    2337074
  • 财政年份:
    2023
  • 资助金额:
    $ 27.24万
  • 项目类别:
    Standard Grant
EAGER: An Integrated Fiber Sensing and Communication Living Lab in the Research Triangle
EAGER:研究三角区的集成光纤传感和通信生活实验室
  • 批准号:
    2330333
  • 财政年份:
    2023
  • 资助金额:
    $ 27.24万
  • 项目类别:
    Standard Grant
EAGER: Ultra Broadband Fully Integrated GaN Front End Integrated Chip
EAGER:超宽带全集成GaN前端集成芯片
  • 批准号:
    2332167
  • 财政年份:
    2023
  • 资助金额:
    $ 27.24万
  • 项目类别:
    Standard Grant
EAGER: Quantum Manufacturing: Scaling Quantum Photonic Circuits with Integrated Superconducting Detectors by 100×
EAGER:量子制造:使用集成超导探测器将量子光子电路扩展 100 倍
  • 批准号:
    2240501
  • 财政年份:
    2023
  • 资助金额:
    $ 27.24万
  • 项目类别:
    Standard Grant
Education DCL: EAGER: Developing a Cyber-Aerial Computing Curriculum for Improving Sky-of-Privacy-Things Education through a Modular-Based Integrated Framework
教育 DCL:EAGER:开发网络航空计算课程,通过基于模块化的集成框架改善隐私天空教育
  • 批准号:
    2335681
  • 财政年份:
    2023
  • 资助金额:
    $ 27.24万
  • 项目类别:
    Standard Grant
EAGER: Quantum Manufacturing: Manufacturing Integrated Quantum Sensing and Quantum Photonic Technologies Through Direct Bonding of Diamond Membranes
EAGER:量子制造:通过直接粘合金刚石膜制造集成量子传感和量子光子技术
  • 批准号:
    2240399
  • 财政年份:
    2023
  • 资助金额:
    $ 27.24万
  • 项目类别:
    Standard Grant
EAGER: Quantum Manufacturing: Enabling Integrated Quantum Network Nodes
EAGER:量子制造:实现集成量子网络节点
  • 批准号:
    2240267
  • 财政年份:
    2023
  • 资助金额:
    $ 27.24万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: IC-Cloak: Integrated Circuit Cloaking against Reverse Engineering
合作研究:EAGER:IC-Cloak:针对逆向工程的集成电路隐形
  • 批准号:
    2213486
  • 财政年份:
    2022
  • 资助金额:
    $ 27.24万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了