EAGER: Quantum Manufacturing: Scaling Quantum Photonic Circuits with Integrated Superconducting Detectors by 100×

EAGER:量子制造:使用集成超导探测器将量子光子电路扩展 100 倍

基本信息

  • 批准号:
    2240501
  • 负责人:
  • 金额:
    $ 27.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

The field of information processing has witnessed remarkable advancements, driven by both traditional computing technology and emerging quantum computing paradigms. Modern information processing technology, represented by classical computers, has revolutionized our lives, enabling us to connect with others, access vast amounts of information, and perform complex tasks efficiently. In parallel, quantum information processing has emerged as a promising frontier that offers unique capabilities beyond the classical limit. While still in its early stages, quantum information processing is poised to show great benefit for society in pursuits of optimizing logistical operations, discovery of novel medicines, and the preservation of secure communication of importance for national security. One of the major challenges in realizing practical quantum devices lies in scaling the number of quantum components on a platform. The proposed project aims to solve this problem by developing a new technology which rely on information carrying photons guided to an array of superconducting detectors to achieve a highly scalable device. Moreover, this project aims to contribute to the advancement of manufacturing techniques for quantum devices, fostering innovation and economic growth. By supporting this proposal, the National Science Foundation (NSF) will play a pivotal role in accelerating the development of quantum technology and positioning the United States at the forefront of this rapidly evolving field. Furthermore, the project will provide opportunities for education and diversity, as it will involve collaborations with academic institutions, training of students, and the promotion of interdisciplinary research.The research proposed here aims to address challenges in quantum photonic integrated circuits (QPICs) by integrating silicon-based waveguides with Microwave Kinetic Inductance Detectors (MKIDs) to pioneer a scalable quantum information processor. The proposed approach seeks to overcome challenges in size, efficiencies, and scale by leveraging the frequency multiplexed readout inherent to kinetic inductance detectors, allowing large arrays to be lithographed with standard CMOS fabrication techniques. Using the evanescent field to facilitate optical information coupling between detectors and waveguides will significantly enhance detector efficiencies, while concurrently reducing size, weight, and cost by replacing table-top optical experiments with this innovative on-chip approach. The project's primary goals include the development of a robust and reliable fabrication process for integrating MKIDs with photonic circuits, the characterization of their performance in terms of system efficiencies, photon energy, number, and timing resolution, and the evaluation of their scalability potential. The research will involve a combination of theoretical modeling, device design, and extensive nanofabrication investigations. The intellectual significance of this project lies in the transformative impact it can have on the field of quantum technology, building up the technological framework required for large-scale, efficient, and reliable QPICs. Furthermore, this research will contribute to advancing the manufacturing techniques for quantum devices, thereby facilitating the translation of fundamental scientific advancements into practical applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在传统计算技术和新兴的量子计算范式的推动下,信息处理领域取得了显著的进步。以经典计算机为代表的现代信息处理技术给我们的生活带来了革命性的变化,使我们能够与他人联系,获取海量信息,并高效地执行复杂的任务。与此同时,量子信息处理已经成为一个很有前途的前沿,它提供了超越经典极限的独特能力。虽然量子信息处理仍处于早期阶段,但在优化后勤作业、发现新药和保护对国家安全具有重要意义的安全通信方面,量子信息处理有望为社会带来巨大好处。实现实用量子器件的主要挑战之一在于扩大平台上量子组件的数量。拟议的项目旨在通过开发一种新技术来解决这一问题,该技术依靠携带光子的信息引导到超导探测器阵列,以实现高度可扩展的设备。此外,该项目旨在促进量子设备制造技术的进步,促进创新和经济增长。通过支持这一提议,美国国家科学基金会(NSF)将在加速量子技术发展和将美国定位于这一快速发展领域的前沿方面发挥关键作用。此外,该项目将提供教育和多样性的机会,因为它将涉及与学术机构的合作,学生的培训,以及促进跨学科研究。这里提出的研究旨在通过将硅基波导与微波动力学电感探测器(MKID)相结合来应对量子光子集成电路(QPIC)的挑战,以开创可扩展的量子信息处理器。提出的方法寻求通过利用动态电感探测器固有的频率多路复用读出来克服尺寸、效率和规模方面的挑战,从而允许使用标准的CMOS制造技术对大型阵列进行光刻。使用逝去场来促进探测器和波导之间的光学信息耦合将显著提高探测器的效率,同时通过用这种创新的芯片上方法取代桌面光学实验来减少尺寸、重量和成本。该项目的主要目标包括开发一种坚固可靠的制造工艺,将MKID与光子电路集成在一起,从系统效率、光子能量、数量和定时分辨率方面表征它们的性能,以及评估它们的可扩展性潜力。这项研究将涉及理论建模、器件设计和广泛的纳米制造研究相结合。这个项目的智力意义在于它可以对量子技术领域产生革命性的影响,建立大规模、高效和可靠的QPIC所需的技术框架。此外,这项研究将有助于推进量子设备的制造技术,从而促进将基础科学进步转化为实际应用。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Benjamin Mazin其他文献

DEEPDISH: A Dark Matter Haloscope Using MKIDs
  • DOI:
    10.1007/s10909-024-03239-2
  • 发表时间:
    2024-11-14
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Miguel Daal;Benjamin Mazin
  • 通讯作者:
    Benjamin Mazin

Benjamin Mazin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Benjamin Mazin', 18)}}的其他基金

High Resolution Multi-Object Fiber-Fed Spectroscopy with Microwave Kinetic Inductance Detectors
具有微波动感电感探测器的高分辨率多目标光纤馈电光谱学
  • 批准号:
    2108651
  • 财政年份:
    2021
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
OP: Collaborative Research: Active Speckle Control and Fast Speckle Statistics to Drastically Improve the Contrast Ratio of Exoplanet Direct Imaging
OP:协作研究:主动散斑控制和快速散斑统计显着提高系外行星直接成像的对比度
  • 批准号:
    1710385
  • 财政年份:
    2017
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
Understanding Pulsar Emission with ARCONS, the first ground-based instrument to use revolutionary cryogenic detectors
使用 ARCONS 了解脉冲星发射,ARCONS 是首款使用革命性低温探测器的地面仪器
  • 批准号:
    1411613
  • 财政年份:
    2014
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
DARKNESS: Dark-Speckle Near-IR Energy-resolved Superconducting Spectrophotometer
DARKNESS:暗斑近红外能量分辨超导分光光度计
  • 批准号:
    1308556
  • 财政年份:
    2013
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Simulation and certification of the ground state of many-body systems on quantum simulators
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
Mapping Quantum Chromodynamics by Nuclear Collisions at High and Moderate Energies
  • 批准号:
    11875153
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

EAGER: Quantum Manufacturing: Supporting Future Quantum Applications by Developing a Robust, Scalable Process to Create Diamond Nitrogen-Vacancy Center Qubits
EAGER:量子制造:通过开发稳健、可扩展的工艺来创建钻石氮空位中心量子位,支持未来的量子应用
  • 批准号:
    2242049
  • 财政年份:
    2023
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
EAGER: Quantum Manufacturing: Monolithic integration of telecommunication-band quantum emitters in the 4H-SiC-on-insulator platform
EAGER:量子制造:电信频段量子发射器在绝缘体上 4H-SiC 平台中的单片集成
  • 批准号:
    2240420
  • 财政年份:
    2023
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Quantum Manufacturing: Vertical Coupling and Cross-Talk Shielding of Superconducting Quantum Devices
合作研究:EAGER:量子制造:超导量子器件的垂直耦合和串扰屏蔽
  • 批准号:
    2240246
  • 财政年份:
    2023
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
EAGER: Quantum Manufacturing: Scalable Manufacturing of Molecular Qubit Arrays Using Self-assembled DNA
EAGER:量子制造:使用自组装 DNA 进行分子量子位阵列的可扩展制造
  • 批准号:
    2240309
  • 财政年份:
    2023
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Quantum Manufacturing: Vertical Coupling and Cross-Talk Shielding of Superconducting Quantum Devices
合作研究:EAGER:量子制造:超导量子器件的垂直耦合和串扰屏蔽
  • 批准号:
    2240245
  • 财政年份:
    2023
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
EAGER: Quantum Manufacturing: Atomic-layer Etching Manufacturing Processes for High Performance Superconducting Quantum Devices
EAGER:量子制造:高性能超导量子器件的原子层蚀刻制造工艺
  • 批准号:
    2234390
  • 财政年份:
    2023
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
EAGER: Quantum Manufacturing: Manufacturing Integrated Quantum Sensing and Quantum Photonic Technologies Through Direct Bonding of Diamond Membranes
EAGER:量子制造:通过直接粘合金刚石膜制造集成量子传感和量子光子技术
  • 批准号:
    2240399
  • 财政年份:
    2023
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
EAGER: Quantum Manufacturing: Three-Dimensional Printing of Meta-Photonic Elements for Chip-based Quantum Devices
EAGER:量子制造:基于芯片的量子器件的元光子元件的三维打印
  • 批准号:
    2240414
  • 财政年份:
    2023
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
EAGER: Quantum Manufacturing "Scalable integration of ion-photon quantum information converters (IP-QIC) on fiber for networking and computing applications"
EAGER:量子制造“离子光子量子信息转换器(IP-QIC)在光纤上的可扩展集成,用于网络和计算应用”
  • 批准号:
    2240227
  • 财政年份:
    2023
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
EAGER: Quantum Manufacturing: 3D Microfabricated Ion Traps
EAGER:量子制造:3D 微制造离子阱
  • 批准号:
    2240291
  • 财政年份:
    2023
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了