CAREER: Annotating the Microbiome using Machine Learning Methods
职业:使用机器学习方法注释微生物组
基本信息
- 批准号:1252318
- 负责人:
- 金额:$ 55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-03-01 至 2019-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project addresses an important challenge of developing sophisticated and novel machine learning techniques for complex real-world problems. New technologies allow us to determine the genomes of organisms co-existing within various ecosystems ranging from ocean, soil and human-body. Several researchers have embarked on studying the pathogenic role played by the microbiome, defined as the collection of microbial organisms within the human body, with respect to human health and disease conditions. The research activities in this CAREER project will develop approaches for the identification of taxonomy, function and metabolic potential from the collective genomes samples. A key contribution will be the development of multi-task learning approaches that combine information across multiple hierarchical databases associated with the annotation problems. During research, the PI will investigate the best ways to capture the underlying hierarchical structure, prevalent within different annotation databases. The rationale underlying this proposed research is that there is a wealth of complementary information that exists across several manually curated biological databases. Associating microbiome with phenotype requires integration of various high-throughput omic data sources (genomic, metabolic, proteomic) that may not be uniformly available across all samples. The PI will develop data fusion classifiers within the multi-task learning paradigm to integrate heterogeneous, incomplete data sources for predicting phenotypes. This project will lead to the following key contributions: (i) Improved metagenome annotation models by integration of multiple prediction tasks and associated databases. (ii) Incorporation of hierarchical information within regularized multi-task learning. (iii) Integration of diverse and incomplete information sources. (iv) Scalable algorithms that use hash based feature representations and improve the learning rates.This project is interdisciplinary and spans the fields of machine learning, bioinformatics, metagenomics, microbiology and environmental ecology. This project will foster the the synergy between teaching and research by providing an environment for all students to develop intellectually and professionally. The project integrates the research with an education plan focused on mentoring of high school, undergraduate and graduate students, curriculum development and laboratory visits. Planned activities include training of inter-disciplinary researchers, integration of microbiome analysis related projects within the classes, curriculum enhancement and implementation of new learning strategies. Open source software and tools will be developed as part of this project, that will enhance scientific understanding and discovery amongst a broad and diverse group of researchers.
该项目解决了为复杂的现实问题开发复杂而新颖的机器学习技术的重要挑战。新技术使我们能够确定海洋、土壤和人体等各种生态系统中共存的生物体的基因组。一些研究人员已经开始研究微生物组(定义为人体内微生物的集合)对人类健康和疾病状况所起的致病作用。该职业项目的研究活动将开发从集体基因组样本中识别分类、功能和代谢潜力的方法。 一个关键贡献将是开发多任务学习方法,该方法将与注释问题相关的多个分层数据库中的信息结合起来。在研究过程中,PI 将研究捕获不同注释数据库中普遍存在的底层层次结构的最佳方法。这项拟议研究的基本原理是,多个手动管理的生物数据库中存在大量的补充信息。 将微生物组与表型相关联需要整合各种高通量组学数据源(基因组、代谢、蛋白质组),这些数据源可能无法在所有样本中统一获得。 PI 将在多任务学习范式中开发数据融合分类器,以集成异构、不完整的数据源来预测表型。该项目将带来以下关键贡献:(i)通过集成多个预测任务和相关数据库改进宏基因组注释模型。 (ii) 将分层信息纳入正规化的多任务学习中。 (iii) 整合多样且不完整的信息源。 (iv) 使用基于哈希的特征表示并提高学习率的可扩展算法。该项目是跨学科的,涵盖机器学习、生物信息学、宏基因组学、微生物学和环境生态学领域。 该项目将通过为所有学生提供智力和专业发展的环境,促进教学和研究之间的协同作用。 该项目将研究与教育计划结合起来,重点是高中生、本科生和研究生的指导、课程开发和实验室参观。 计划的活动包括跨学科研究人员的培训、微生物组分析相关项目在课程中的整合、课程强化和新学习策略的实施。作为该项目的一部分,将开发开源软件和工具,这将增强广泛而多样化的研究人员群体的科学理解和发现。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Huzefa Rangwala其他文献
WLA4ND: a Wearable Dataset of Learning Activities for Young Adults with Neurodiversity to Provide Support in Education
WLA4ND:为具有神经多样性的年轻人提供学习活动的可穿戴数据集,为教育提供支持
- DOI:
10.1145/3441852.3471220 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Hui Zheng;Pattiya Mahapasuthanon;Yujing Chen;Huzefa Rangwala;A. Evmenova;V. Motti - 通讯作者:
V. Motti
Counterfactually Fair Dynamic Assignment: A Case Study on Policing
反事实公平动态分配:警务案例研究
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Tasfia Mashiat;Xavier Gitiaux;Huzefa Rangwala;Sanmay Das - 通讯作者:
Sanmay Das
br /Predicting Protein Function using Multiple span style=line-height:1.5;Kernels/span
使用多个内核预测蛋白质功能
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Guoxian Yu;Huzefa Rangwala;Carlotta Domeniconi;Guoji Zhang;Zili Zhang - 通讯作者:
Zili Zhang
spanProtein Function Prediction with Incomplete Annotations/span
注释不完整的蛋白质功能预测
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Guoxian Yu;Huzefa Rangwala;Carlotta Domeniconi;Guoji Zhang;Zhiwen Yu - 通讯作者:
Zhiwen Yu
Protein Function Prediction Using Multilabel Ensemble Classification
使用多标签集成分类进行蛋白质功能预测
- DOI:
10.1109/tcbb.2013.111 - 发表时间:
2013-07 - 期刊:
- 影响因子:0
- 作者:
Guoxian Yu;Huzefa Rangwala;Carlotta Domeniconi;Guoji Zhang;Zhiwen Yu - 通讯作者:
Zhiwen Yu
Huzefa Rangwala的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Huzefa Rangwala', 18)}}的其他基金
REU Site: Undergraduate Research in Educational Data Mining
REU 网站:教育数据挖掘本科生研究
- 批准号:
1757064 - 财政年份:2018
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
BIGDATA: IA: DKA: Collaborative Research: Learning Data Analytics: Providing Actionable Insights to Increase College Student Success
大数据:IA:DKA:协作研究:学习数据分析:提供可行的见解以提高大学生的成功
- 批准号:
1447489 - 财政年份:2014
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
Career Mentoring Forum and Student Travel Support for 2012 IEEE International Conference on Data Engineering (ICDE)
2012 年 IEEE 国际数据工程会议 (ICDE) 职业指导论坛和学生旅行支持
- 批准号:
1228466 - 财政年份:2012
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
III: Medium: Collaborative Research: Computational Methods to Advance Chemical Genetics by Bridging Chemical and Biological Spaces
III:媒介:合作研究:通过桥接化学和生物空间推进化学遗传学的计算方法
- 批准号:
0905117 - 财政年份:2009
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
相似海外基金
Annotating the New Testament: Codex H, Euthalian Traditions, and the Humanities
新约注释:Codex H、安乐传统和人文学科
- 批准号:
AH/X001458/1 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别:
Research Grant
Annotating the New Testament: Textual Transmission as Reception History
注释新约:文字传播作为接受历史
- 批准号:
2890120 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别:
Studentship
Annotating dark ion-channel functions using evolutionary features, machine learning and knowledge graph mining
使用进化特征、机器学习和知识图挖掘注释暗离子通道函数
- 批准号:
10457684 - 财政年份:2022
- 资助金额:
$ 55万 - 项目类别:
Annotating dark ion-channel functions using evolutionary features, machine learning and knowledge graph mining (Kennady Boyd)
使用进化特征、机器学习和知识图挖掘注释暗离子通道函数 (Kennady Boyd)
- 批准号:
10809950 - 财政年份:2022
- 资助金额:
$ 55万 - 项目类别:
Annotating dark ion-channel functions using evolutionary features, machine learning and knowledge graph mining
使用进化特征、机器学习和知识图挖掘注释暗离子通道函数
- 批准号:
10661550 - 财政年份:2022
- 资助金额:
$ 55万 - 项目类别:
Computational framework for analyzing and annotating single bacterium RNA-Seq data
用于分析和注释单细菌 RNA-Seq 数据的计算框架
- 批准号:
10444669 - 财政年份:2022
- 资助金额:
$ 55万 - 项目类别:
Annotating dark ion-channel functions using evolutionary features, machine learning and knowledge graph mining (Rayna Carter)
使用进化特征、机器学习和知识图挖掘注释暗离子通道函数 (Rayna Carter)
- 批准号:
10809931 - 财政年份:2022
- 资助金额:
$ 55万 - 项目类别:
Computational framework for analyzing and annotating single bacterium RNA-Seq data
用于分析和注释单细菌 RNA-Seq 数据的计算框架
- 批准号:
10610447 - 财政年份:2022
- 资助金额:
$ 55万 - 项目类别:
Annotating Reference and Coreference In Dialogue Using Conversational Agents in games
在游戏中使用对话代理注释对话中的参考和共指
- 批准号:
EP/W001632/1 - 财政年份:2022
- 资助金额:
$ 55万 - 项目类别:
Research Grant
Annotating Recorded Telemetry for Extracting Meaning and Insight from Scenarios in Virtual Reality (ARTEMIS-VR)
注释记录的遥测数据以从虚拟现实场景中提取意义和见解 (ARTEMIS-VR)
- 批准号:
10022324 - 财政年份:2022
- 资助金额:
$ 55万 - 项目类别:
Feasibility Studies