Annotating dark ion-channel functions using evolutionary features, machine learning and knowledge graph mining (Kennady Boyd)
使用进化特征、机器学习和知识图挖掘注释暗离子通道函数 (Kennady Boyd)
基本信息
- 批准号:10809950
- 负责人:
- 金额:$ 0.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-07 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAddressAmino Acid SequenceArtificial IntelligenceAutomated AbstractingBlindnessCalciumCardiovascular DiseasesCell physiologyClassificationCommunitiesCryoelectron MicroscopyDarknessDataDiseaseDisparateElectrophysiology (science)EpilepsyFamilyFamily memberGenomeGoalsGraphHomeostasisInformaticsIon ChannelKidney FailureLanguageLinkMachine LearningMalignant NeoplasmsMapsMethodsMiningMissionMolecularMutationNamesOrganismOrthologous GenePathway interactionsPhysiologicalProteinsProteomeReadabilityResourcesSemanticsSourceStructural ModelsStructureStructure-Activity RelationshipTestingTrainingVisualizationcell typedeep learning modeldrug discoveryexperimental studygenome resourcehuman diseaseknowledge graphknowledge integrationmodel organismnervous system disordertool
项目摘要
Project Summary (unchanged)
The overall goal of this proposal is to annotate understudied dark ion channels using a
combination of computational and experimental approaches. Our working hypothesis is
that the wealth of evolutionary data encoded in ion-channel sequences from diverse
organisms and integrative mining of evolutionary data with structure, function, pathway
and expression data will provide important context for predicting and annotating dark
channel functions at the molecular and cellular level. As a preliminary test of our
hypothesis, we have generated a functional classification of ion channel sequences using
a protein language based deep learning model trained on 250 million protein sequences
and have delineated the distinguishing sequence and structural features of understudied
Calcium Homeostasis Modulator (CALHM) family. We have also built an integrated
Knowledge Graph (KG) linking diverse forms of ion channel information in machine
readable format and deployed the KG for predicting physiological functions using a graph
embedding approach that efficiently captures contextual information encoded in large
graphs. We propose to build on these successful studies to accomplish the following two
aims. Aim1 will develop new tools and resources for visualizing, mining and annotating
dark channels using evolutionary features and structural models made available through
cryo-EM studies and artificial intelligence based structure prediction methods. The unique
modes of CALHM family gating and oligomerization mechanisms predicted through
evolutionary studies will be experimentally validated through mutational studies and
electrophysiology experiments. Aim2 will further develop the ion channel KG by
semantically linking multiple disparate sources of data including cell-type specific
expression, orthologs from model organisms and electrophysiology parameters.
Knowledge graph embedding approaches will be employed to predict links between
understudied channels, disease associations and physiological functions and the
predictions will be made available as text summaries in the IDG resource Pharos. The
proposed studies are expected to address the unique informatics needs of the ion channel
community by providing new tools and resources for mapping sequence-structure-
function relationships. The proposed studies will also provide new testable hypotheses
on understudied channels and significantly enhance the value of Pharos in illuminating
the functions of the understudied druggable proteome.
项目摘要(未更改)
这个提议的总体目标是使用一个
计算和实验方法的结合。我们的假设是
从不同的基因序列中编码在离子通道序列中的大量进化数据
生物体与结构、功能、途径等进化数据的综合挖掘
和表达数据将为预测和注释黑暗提供重要的背景
通道在分子和细胞水平上发挥作用。作为我们的初步测试,
假设,我们已经产生了离子通道序列的功能分类,
基于2.5亿个蛋白质序列训练的蛋白质语言深度学习模型
并在此基础上,对研究区的构造特征和识别序列进行了划分,
钙稳态调节剂(CALHM)家族。我们还建立了一个综合的
知识图(KG)连接机器中不同形式的离子通道信息
可读格式并部署KG使用图表预测生理功能
嵌入方法,有效地捕获大规模编码的上下文信息
图表。我们建议在这些成功研究的基础上,
目标。Aim1将开发新的工具和资源,用于可视化,挖掘和注释
暗通道利用演化特征和结构模型,
冷冻电镜研究和人工智能结构预测方法。独特的
CALHM家族门控和寡聚化机制的模式预测通过
进化研究将通过突变研究进行实验验证,
电生理学实验Aim2将进一步开发离子通道KG,
在语义上链接多个不同的数据源
表达、来自模式生物的直系同源物和电生理学参数。
知识图嵌入方法将用于预测
研究不足的渠道,疾病协会和生理功能,
预测将在IDG资源Pharos中以文本摘要的形式提供。的
预计拟议的研究将解决离子通道的独特信息学需求
通过提供新的工具和资源来绘制序列结构,
功能关系。拟议的研究还将提供新的可检验的假设
在未充分研究的渠道,并显着提高灯塔的价值,
未充分研究的可药用蛋白质组的功能。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Predicting protein and pathway associations for understudied dark kinases using pattern-constrained knowledge graph embedding.
- DOI:10.7717/peerj.15815
- 发表时间:2023
- 期刊:
- 影响因子:2.7
- 作者:Salcedo MV;Gravel N;Keshavarzi A;Huang LC;Kochut KJ;Kannan N
- 通讯作者:Kannan N
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Natarajan Kannan其他文献
Natarajan Kannan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Natarajan Kannan', 18)}}的其他基金
Annotating dark ion-channel functions using evolutionary features, machine learning and knowledge graph mining
使用进化特征、机器学习和知识图挖掘注释暗离子通道函数
- 批准号:
10457684 - 财政年份:2022
- 资助金额:
$ 0.91万 - 项目类别:
Annotating dark ion-channel functions using evolutionary features, machine learning and knowledge graph mining
使用进化特征、机器学习和知识图挖掘注释暗离子通道函数
- 批准号:
10661550 - 财政年份:2022
- 资助金额:
$ 0.91万 - 项目类别:
Annotating dark ion-channel functions using evolutionary features, machine learning and knowledge graph mining (Rayna Carter)
使用进化特征、机器学习和知识图挖掘注释暗离子通道函数 (Rayna Carter)
- 批准号:
10809931 - 财政年份:2022
- 资助金额:
$ 0.91万 - 项目类别:
Unlocking sequence-structure-function-disease relationships in large protein super-families
解锁大型蛋白质超家族中的序列-结构-功能-疾病关系
- 批准号:
10793016 - 财政年份:2021
- 资助金额:
$ 0.91万 - 项目类别:
Unlocking sequence-structure-function-disease relationships in large protein super-families
解锁大型蛋白质超家族中的序列-结构-功能-疾病关系
- 批准号:
10552630 - 财政年份:2021
- 资助金额:
$ 0.91万 - 项目类别:
Determining the scope of prenylatable protein sequences
确定可异戊二烯化的蛋白质序列的范围
- 批准号:
10019396 - 财政年份:2019
- 资助金额:
$ 0.91万 - 项目类别:
Determining the scope of prenylatable protein sequences
确定可异戊二烯化的蛋白质序列的范围
- 批准号:
10461733 - 财政年份:2019
- 资助金额:
$ 0.91万 - 项目类别:
A data analytics framework for mining the dark kinome
用于挖掘暗激酶组的数据分析框架
- 批准号:
9915864 - 财政年份:2019
- 资助金额:
$ 0.91万 - 项目类别:
Determining the scope of prenylatable protein sequences
确定可异戊二烯化的蛋白质序列的范围
- 批准号:
10218213 - 财政年份:2019
- 资助金额:
$ 0.91万 - 项目类别:
A data analytics framework for mining the dark kinome
用于挖掘暗激酶组的数据分析框架
- 批准号:
10348826 - 财政年份:2019
- 资助金额:
$ 0.91万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 0.91万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 0.91万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 0.91万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 0.91万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 0.91万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 0.91万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 0.91万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 0.91万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 0.91万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 0.91万 - 项目类别:
Research Grant