Annotating dark ion-channel functions using evolutionary features, machine learning and knowledge graph mining
使用进化特征、机器学习和知识图挖掘注释暗离子通道函数
基本信息
- 批准号:10457684
- 负责人:
- 金额:$ 47.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-07 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAmino Acid SequenceAnimal ModelArtificial IntelligenceBayesian MethodBiological ProcessBlindnessCalciumCardiovascular DiseasesCell physiologyChemicalsClassificationCommunitiesCryoelectron MicroscopyDataDiseaseElectrophysiology (science)EpilepsyEvolutionFamilyFamily memberFelis catusFoundationsG-Protein-Coupled ReceptorsGenesGenomeGoalsGraphHomeostasisHumanHuman GenomeInformaticsIon ChannelKidney FailureKnowledgeLanguageLightLinkMachine LearningMalignant NeoplasmsMapsMethodsMiningMissionMolecularMutationMutation AnalysisNamesOrganismOrthologous GeneOutcomePathway interactionsPatternPhosphotransferasesPhysiologicalPlayProtein FamilyProteinsProteomeReadabilityRegulationResearchResearch PersonnelResourcesRoleSemanticsSourceStructural ModelsStructureStructure-Activity RelationshipSystems BiologyTestingTextTrainingbasecell typedeep learningdeep learning modeldrug discoveryexperimental studygenome resourcehuman diseaseinterestknowledge graphnervous system disordernovelpatch clampprotein protein interactionstructural biologytool
项目摘要
Project Summary
The overall goal of this proposal is to annotate understudied dark ion channels using a combination of computational and experimental approaches. Our working hypothesis is that the wealth of evolutionary data encoded in ion-channel sequences from diverse organisms and integrative mining of evolutionary data with structure, function, pathway and expression data will provide important context for predicting and annotating dark channel functions at the molecular and cellular level. As a preliminary test of our hypothesis, we have generated a functional classification of ion channel sequences using a protein language based deep learning model trained on 250 million protein sequences and have delineated the distinguishing sequence and structural features of understudied Calcium Homeostasis Modulator (CALHM) family. We have also built an integrated Knowledge Graph (KG) linking diverse forms of ion channel information in machine readable format and deployed the KG for predicting physiological functions using a graph embedding approach that efficiently captures contextual information encoded in large graphs. We propose to build on these successful studies to accomplish the following two aims. Aim1 will develop new tools and resources for visualizing, mining and annotating dark channels using evolutionary features and structural models made available through cryo-EM studies and artificial intelligence based structure prediction methods. The unique modes of CALHM family gating and oligomerization mechanisms predicted through evolutionary studies will be experimentally validated through mutational studies and electrophysiology experiments. Aim2 will further develop the ion channel KG by semantically linking multiple disparate sources of data including cell-type specific expression, orthologs from model organisms and electrophysiology parameters. Knowledge graph embedding approaches will be employed to predict links between understudied channels, disease associations and physiological functions and the predictions will be made available as text summaries in the IDG resource Pharos. The proposed studies are expected to address the unique informatics needs of the ion channel community by providing new tools and resources for mapping sequence-structure-function relationships. The proposed studies will also provide new testable hypotheses on understudied channels and significantly enhance the value of Pharos in illuminating the functions of the understudied druggable proteome.
项目摘要
这项提议的总体目标是使用计算和实验相结合的方法来注释未被研究的暗离子通道。我们的工作假设是,从不同生物的离子通道序列中编码的丰富的进化数据,以及对进化数据与结构、功能、途径和表达数据的综合挖掘,将为在分子和细胞水平上预测和诠释暗通道功能提供重要的背景。作为对我们假设的初步检验,我们使用基于蛋白质语言的深度学习模型对离子通道序列进行了功能分类,该模型对2.5亿个蛋白质序列进行了训练,并描绘了未被研究的钙稳态调节器(CALHM)家族的区别序列和结构特征。我们还构建了一个集成的知识图(KG),以机器可读的格式连接不同形式的离子通道信息,并使用图形嵌入方法部署用于预测生理功能的KG,该方法可以有效地捕获编码在大图中的上下文信息。我们建议在这些成功研究的基础上,实现以下两个目标。AIM1将开发新的工具和资源,用于可视化、挖掘和注释暗通道,使用通过低温电磁研究和基于人工智能的结构预测方法获得的进化特征和结构模型。通过进化研究预测的CALHM家族门控和寡聚机制的独特模式将通过突变研究和电生理学实验进行实验验证。AIM2将进一步开发离子通道KG,通过语义链接多个不同的数据来源,包括细胞类型特定表达、模式生物的同源基因和电生理参数。知识图谱嵌入方法将被用来预测未被研究的渠道、疾病关联和生理功能之间的联系,预测将作为文本摘要在IDG资源Pharos中提供。拟议的研究有望通过提供绘制序列-结构-功能关系的新工具和资源来满足离子通道社区的独特信息学需求。拟议的研究还将为未被研究的通道提供新的可验证的假说,并显著提高PHAROS在阐明未被研究的可药物蛋白质组的功能方面的价值。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Natarajan Kannan其他文献
Natarajan Kannan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Natarajan Kannan', 18)}}的其他基金
Annotating dark ion-channel functions using evolutionary features, machine learning and knowledge graph mining (Kennady Boyd)
使用进化特征、机器学习和知识图挖掘注释暗离子通道函数 (Kennady Boyd)
- 批准号:
10809950 - 财政年份:2022
- 资助金额:
$ 47.79万 - 项目类别:
Annotating dark ion-channel functions using evolutionary features, machine learning and knowledge graph mining
使用进化特征、机器学习和知识图挖掘注释暗离子通道函数
- 批准号:
10661550 - 财政年份:2022
- 资助金额:
$ 47.79万 - 项目类别:
Annotating dark ion-channel functions using evolutionary features, machine learning and knowledge graph mining (Rayna Carter)
使用进化特征、机器学习和知识图挖掘注释暗离子通道函数 (Rayna Carter)
- 批准号:
10809931 - 财政年份:2022
- 资助金额:
$ 47.79万 - 项目类别:
Unlocking sequence-structure-function-disease relationships in large protein super-families
解锁大型蛋白质超家族中的序列-结构-功能-疾病关系
- 批准号:
10793016 - 财政年份:2021
- 资助金额:
$ 47.79万 - 项目类别:
Unlocking sequence-structure-function-disease relationships in large protein super-families
解锁大型蛋白质超家族中的序列-结构-功能-疾病关系
- 批准号:
10552630 - 财政年份:2021
- 资助金额:
$ 47.79万 - 项目类别:
Determining the scope of prenylatable protein sequences
确定可异戊二烯化的蛋白质序列的范围
- 批准号:
10019396 - 财政年份:2019
- 资助金额:
$ 47.79万 - 项目类别:
Determining the scope of prenylatable protein sequences
确定可异戊二烯化的蛋白质序列的范围
- 批准号:
10461733 - 财政年份:2019
- 资助金额:
$ 47.79万 - 项目类别:
A data analytics framework for mining the dark kinome
用于挖掘暗激酶组的数据分析框架
- 批准号:
9915864 - 财政年份:2019
- 资助金额:
$ 47.79万 - 项目类别:
Determining the scope of prenylatable protein sequences
确定可异戊二烯化的蛋白质序列的范围
- 批准号:
10218213 - 财政年份:2019
- 资助金额:
$ 47.79万 - 项目类别:
A data analytics framework for mining the dark kinome
用于挖掘暗激酶组的数据分析框架
- 批准号:
10348826 - 财政年份:2019
- 资助金额:
$ 47.79万 - 项目类别:
相似海外基金
Cerebral infarction treatment strategy using collagen-like "triple helix peptide" containing functional amino acid sequence
含功能氨基酸序列的类胶原“三螺旋肽”治疗脑梗塞策略
- 批准号:
23K06972 - 财政年份:2023
- 资助金额:
$ 47.79万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Establishment of a screening method for functional microproteins independent of amino acid sequence conservation
不依赖氨基酸序列保守性的功能性微生物蛋白筛选方法的建立
- 批准号:
23KJ0939 - 财政年份:2023
- 资助金额:
$ 47.79万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Effects of amino acid sequence and lipids on the structure and self-association of transmembrane helices
氨基酸序列和脂质对跨膜螺旋结构和自缔合的影响
- 批准号:
19K07013 - 财政年份:2019
- 资助金额:
$ 47.79万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Construction of electron-transfer amino acid sequence probe with an interaction for protein and cell
蛋白质与细胞相互作用的电子转移氨基酸序列探针的构建
- 批准号:
16K05820 - 财政年份:2016
- 资助金额:
$ 47.79万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of artificial antibody of anti-bitter taste receptor using random amino acid sequence library
利用随机氨基酸序列库开发抗苦味受体人工抗体
- 批准号:
16K08426 - 财政年份:2016
- 资助金额:
$ 47.79万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The aa15-17 amino acid sequence in the terminal protein domain of HBV polymerase as a viral factor affect-ing in vivo as well as in vitro replication activity of the virus.
HBV聚合酶末端蛋白结构域中的aa15-17氨基酸序列作为影响病毒体内和体外复制活性的病毒因子。
- 批准号:
25461010 - 财政年份:2013
- 资助金额:
$ 47.79万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Amino acid sequence analysis of fossil proteins using mass spectrometry
使用质谱法分析化石蛋白质的氨基酸序列
- 批准号:
23654177 - 财政年份:2011
- 资助金额:
$ 47.79万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Precise hybrid synthesis of glycoprotein through amino acid sequence-specific introduction of oligosaccharide followed by enzymatic transglycosylation reaction
通过氨基酸序列特异性引入寡糖,然后进行酶促糖基转移反应,精确杂合合成糖蛋白
- 批准号:
22550105 - 财政年份:2010
- 资助金额:
$ 47.79万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Estimating selection on amino-acid sequence polymorphisms in Drosophila
果蝇氨基酸序列多态性选择的估计
- 批准号:
NE/D00232X/1 - 财政年份:2006
- 资助金额:
$ 47.79万 - 项目类别:
Research Grant
Construction of a neural network for detecting novel domains from amino acid sequence information only
构建仅从氨基酸序列信息检测新结构域的神经网络
- 批准号:
16500189 - 财政年份:2004
- 资助金额:
$ 47.79万 - 项目类别:
Grant-in-Aid for Scientific Research (C)