Novel Supercapacitors with Ultrahigh Energy Densities

具有超高能量密度的新型超级电容器

基本信息

  • 批准号:
    1252924
  • 负责人:
  • 金额:
    $ 33.39万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-08-01 至 2016-08-31
  • 项目状态:
    已结题

项目摘要

PI: Shaw, LeonProposal Number: 1234976Institution: University of ConnecticutTitle: Novel Supercapacitors with Ultrahigh Energy DensitiesDevelopment of both electric vehicles and renewable energy requires energy storage systems that have high energy density and power density simultaneously with superior cycle life and low cost. It is well known that batteries typically provide high energy densities but with low power capacities, whereas capacitors normally have high power densities but with low energy capacities. However, for widespread market penetration of electric vehicles, particularly for plug-in hybrid vehicles and all electrical vehicles, high energy density is required for long driving distance, while high power density is needed for rapid recharge. Thus, the growing need for both high energy density and high power density cannot be met simultaneously with the existing storage technology. This project is proposed to solve these problems.In this project, a new generation of electrochemical capacitors, also termed supercapacitors (SCs), will be investigated and developed. Through innovative design and manufacturing of the electrode architecture, the key principles for making assembled SCs that have specific energy equivalent to those of batteries (~85 Wh/kg) while possessing ultrahigh rate performance (i.e., charging and discharging in a few minutes) will be established. These underlying principles can be applied in the future to construct SCs with even higher specific energies when the next-generation design of the electrode chemistry and nanostructure becomes available. Recent advancements in the electrode chemistry and nanostructure have revealed that SCs with high energy densities similar to those of batteries (e.g., 85 Wh/kg) are possible if the energy density is computed based on the active electrode materials alone. However, the high energy density based on the active electrode materials alone is very difficult to be translated into assembled devices with the similar high energy density. Assembled SCs, like Li-ion batteries, contain current collectors, electrolyte, separator, binder, connectors, and packaging, in addition to the electrodes. As a result, the energy density of an assembled device is typically lower than that of the active material by a factor of 3 to 4 or more. The proposed SCs in this project with interpenetrating positive and negative electrodes will solve this challenging problem precisely. Due to the innovative design of the electrode architecture, the thickness, width and height of electrodes can be made as large as possible until electronic conductivity becomes rate limiting. With this transformative technology, the PI will convert the high energy density based on the active electrode material into a comparable high energy density for an assembled device. The broad impact of this project will manifest in three fronts. First, the new generation SCs with unprecedented energy densities and superior rate performance are expected to revolutionize the field of energy storage and expedite the market penetration of electric vehicles and utilization of renewable energy, enabling major leaps to ensure our nation?s long-term energy security and a clean environment. Second, this project will provide excellent education and training opportunity to one graduate student and many undergraduate students in the areas of energy storage and alternative energy. Third, this project will make contributions to public education about nano-manufacturing and alternative energy.
主要研究者:Shaw,LeonProposal编号:1234976机构:康涅狄格大学题目:具有超高能量密度的新型超级电容器电动汽车和可再生能源的发展都要求储能系统同时具有高能量密度和功率密度,并具有上级循环寿命和低成本。众所周知,电池通常提供高能量密度但具有低功率容量,而电容器通常具有高功率密度但具有低能量容量。然而,对于电动车辆的广泛市场渗透,特别是对于插电式混合动力车辆和全电动车辆,需要高能量密度以实现长行驶距离,而需要高功率密度以实现快速充电。因此,现有的存储技术不能同时满足对高能量密度和高功率密度的日益增长的需求。本项目正是针对这些问题而提出的,在本项目中,将研究和开发新一代电化学电容器,也称为超级电容器(SC)。通过电极结构的创新设计和制造,制造具有与电池相当的比能量(~85 Wh/kg)同时具有可充电性能(即,在几分钟内充电和放电)将被建立。当下一代电极化学和纳米结构的设计变得可用时,这些基本原理可以在未来应用于构建具有更高比能量的SC。电极化学和纳米结构的最新进展已经揭示了具有类似于电池的高能量密度的SC(例如,85 Wh/kg)是可能的,如果能量密度仅基于活性电极材料计算。然而,仅基于活性电极材料的高能量密度很难转化为具有类似高能量密度的组装装置。组装的SC,如锂离子电池,除了电极之外,还包含集流体、电解质、隔板、粘合剂、连接器和包装。结果,组装装置的能量密度通常比活性材料的能量密度低3至4倍或更多。本项目中提出的具有互穿正负电极的SC将精确地解决这一具有挑战性的问题。由于电极结构的创新设计,电极的厚度、宽度和高度可以尽可能大,直到电子传导率成为速率限制。通过这项变革性技术,PI将基于活性电极材料的高能量密度转换为组装器械的可比高能量密度。该项目的广泛影响将体现在三个方面。首先,具有前所未有的能量密度和上级倍率性能的新一代SC有望彻底改变储能领域,加快电动汽车的市场渗透和可再生能源的利用,实现重大飞跃,确保我们的国家?长期能源安全和清洁环境。第二,该项目将为一名研究生和多名本科生提供储能和替代能源领域的良好教育和培训机会。第三,该项目将有助于公众教育有关纳米制造和替代能源。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Leon Shaw其他文献

High-Speed Additive Manufacturing Through High-Aspect-Ratio Nozzles
  • DOI:
    10.1007/s11837-017-2729-4
  • 发表时间:
    2018-01-16
  • 期刊:
  • 影响因子:
    2.300
  • 作者:
    Leon Shaw;Mashfiqul Islam;Jie Li;Ling Li;S. M. Imran Ayub
  • 通讯作者:
    S. M. Imran Ayub
Modeling and Analysis of High-Energy Ball Milling Through Attritors
Investigating TEP as a greener alternative to NMP in Ni-rich cathode fabrication
在富镍正极制造中研究三乙撑二胺作为 NMP 的绿色替代品
  • DOI:
    10.1016/j.jechem.2022.12.006
  • 发表时间:
    2023-03-01
  • 期刊:
  • 影响因子:
    14.900
  • 作者:
    Changlong Chen;Vignyatha Reddy Tatagari;Hao Lin;Leon Shaw
  • 通讯作者:
    Leon Shaw

Leon Shaw的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Leon Shaw', 18)}}的其他基金

Center of All-Solid-State Batteries for a Clean Energy Society
清洁能源社会全固态电池中心
  • 批准号:
    2230770
  • 财政年份:
    2023
  • 资助金额:
    $ 33.39万
  • 项目类别:
    Standard Grant
I-Corps: Silicon(Si)-based Rechargeable Batteries
I-Corps:硅 (Si) 基可充电电池
  • 批准号:
    1922937
  • 财政年份:
    2019
  • 资助金额:
    $ 33.39万
  • 项目类别:
    Standard Grant
PFI-TT: Rechargeable Batteries with Ultrafast Charging Capability and Long Usage Time per Charge
PFI-TT:具有超快充电能力和每次充电使用时间长的充电电池
  • 批准号:
    1918991
  • 财政年份:
    2019
  • 资助金额:
    $ 33.39万
  • 项目类别:
    Standard Grant
Scalable Manufacturing of Hierarchical Silicon/Carbon Nanocomposite Anodes for Next Generation Batteries
用于下一代电池的分层硅/碳纳米复合阳极的可扩展制造
  • 批准号:
    1660572
  • 财政年份:
    2017
  • 资助金额:
    $ 33.39万
  • 项目类别:
    Standard Grant
Mechanical Activation Enhanced Solid-State Reaction and Electrochemical Properties of NaCrO2
NaCrO2 的机械活化增强固相反应及电化学性能
  • 批准号:
    1709959
  • 财政年份:
    2017
  • 资助金额:
    $ 33.39万
  • 项目类别:
    Continuing Grant
PFI:AIR-TT: WC/Co Materials with High Hardness and Toughness Simultaneously Enabled by the WC Platelet Microstructure
PFI:AIR-TT:WC片状微观结构同时具有高硬度和韧性的WC/Co材料
  • 批准号:
    1414021
  • 财政年份:
    2014
  • 资助金额:
    $ 33.39万
  • 项目类别:
    Standard Grant
Multi-Material, Multi-Layer Devices Enabled by High Aspect Ratio Micro-Extrusion
高纵横比微挤压实现多材料、多层器件
  • 批准号:
    1331735
  • 财政年份:
    2013
  • 资助金额:
    $ 33.39万
  • 项目类别:
    Standard Grant
Scalable Manufacturing of Novel Hydrogen Storage Materials with Control at Nanometer Length Scales
纳米长度尺度控制的新型储氢材料的可扩展制造
  • 批准号:
    1261782
  • 财政年份:
    2012
  • 资助金额:
    $ 33.39万
  • 项目类别:
    Standard Grant
Scalable Manufacturing of Novel Hydrogen Storage Materials with Control at Nanometer Length Scales
纳米长度尺度控制的新型储氢材料的可扩展制造
  • 批准号:
    1228888
  • 财政年份:
    2012
  • 资助金额:
    $ 33.39万
  • 项目类别:
    Standard Grant
Functionally Graded Orthopedic Implants via the Slurry Mixing and Dispensing Process
通过浆料混合和分配过程实现功能分级骨科植入物
  • 批准号:
    1312289
  • 财政年份:
    2012
  • 资助金额:
    $ 33.39万
  • 项目类别:
    Continuing Grant

相似海外基金

Bio-MATSUPER: Development of high-performance supercapacitors based on bio-based carbon materials
Bio-MATSUPER:开发基于生物基碳材料的高性能超级电容器
  • 批准号:
    EP/Z001013/1
  • 财政年份:
    2025
  • 资助金额:
    $ 33.39万
  • 项目类别:
    Fellowship
Transforming Supercapacitors by using Metal-Organic Framework Electrodes
使用金属有机框架电极改造超级电容器
  • 批准号:
    EP/X042693/1
  • 财政年份:
    2023
  • 资助金额:
    $ 33.39万
  • 项目类别:
    Research Grant
Thermally chargeable supercapacitors: self-powered welfare energy storage devices
热充电超级电容器:自供电福利储能装置
  • 批准号:
    22KF0389
  • 财政年份:
    2023
  • 资助金额:
    $ 33.39万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Simultaneous Wide and Small Angle Operando Neutron Total Scattering to Probe Electrolyte Ordering in Supercapacitors
同时进行广角和小角操作中子全散射来探测超级电容器中的电解质排序
  • 批准号:
    2879388
  • 财政年份:
    2023
  • 资助金额:
    $ 33.39万
  • 项目类别:
    Studentship
Developing sustainable fibre supercapacitors using 2D materials and natural biopolymers
使用二维材料和天然生物聚合物开发可持续纤维超级电容器
  • 批准号:
    EP/Y023439/1
  • 财政年份:
    2023
  • 资助金额:
    $ 33.39万
  • 项目类别:
    Fellowship
Graphene Quantum Dots as an Electrode Material for Hybrid Battery-Supercapacitors
石墨烯量子点作为混合电池-超级电容器的电极材料
  • 批准号:
    2867966
  • 财政年份:
    2023
  • 资助金额:
    $ 33.39万
  • 项目类别:
    Studentship
Advanced supercapacitors for energy storage
用于储能的先进超级电容器
  • 批准号:
    RGPIN-2018-04014
  • 财政年份:
    2022
  • 资助金额:
    $ 33.39万
  • 项目类别:
    Discovery Grants Program - Individual
Mixed-metal-oxide electrodes for hydrogen production by water electrolysis and for electrical charge storage in supercapacitors
用于水电解制氢和超级电容器电荷存储的混合金属氧化物电极
  • 批准号:
    RGPIN-2016-04192
  • 财政年份:
    2021
  • 资助金额:
    $ 33.39万
  • 项目类别:
    Discovery Grants Program - Individual
PFI-TT: High-Energy Supercapacitors Based on Materials Stable Over Large Voltage Ranges
PFI-TT:基于在大电压范围内稳定的材料的高能超级电容器
  • 批准号:
    2120103
  • 财政年份:
    2021
  • 资助金额:
    $ 33.39万
  • 项目类别:
    Standard Grant
MCA: Fabrication of Structural Organic Supercapacitors
MCA:结构有机超级电容器的制造
  • 批准号:
    2120701
  • 财政年份:
    2021
  • 资助金额:
    $ 33.39万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了