Center of All-Solid-State Batteries for a Clean Energy Society
清洁能源社会全固态电池中心
基本信息
- 批准号:2230770
- 负责人:
- 金额:$ 149.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-01-01 至 2025-12-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Part 1, non-technicalReducing greenhouse gas emissions is critical to address the grand challenge of climate change. Renewable energy integration and vehicle electrification, keys to reducing greenhouse gas emissions, require energy storage at scale with safety and low cost. This PIRE team will conduct fundamental research to advance science and technology of all-solid-state batteries (ASSBs), which have the potential to transform rechargeable batteries for vehicle electrification and integration of renewable energy by offering next-generation energy storage devices with higher specific energy at both battery-cell and battery-pack levels, longer cycle life, lower cost and superior safety compared to Li-ion batteries (LIBs). The anticipated economic benefit (reduction in the cost of battery packs on the energy base by 50% over LIBs) along with unprecedented electrochemical performance (150% increase in the specific energy) and intrinsic safety will usher in a new era of vehicle electrification and renewable energy integration for a sustainable society with clean energy. By working with international partners from 7 institutions in Europe, the researchers will achieve the challenging goal of advancing science and technology in ASSBs. Through collaboration with industrial partners, the research team will expedite technology translation from laboratory discovery to commercial products. Further, they will collaborate with several minority-serving elementary, middle and high schools in Chicago to inspire underrepresented minority students to pursue STEM education and career. By working with City of Chicago, the researchers will launch a workforce development program, offering short courses and workshops to mid-career employees and underrepresented minorities, which can accelerate transition of the workforce into clean energy, electric vehicle, and energy storage industries.Part 2, technicalTo address the multi-faceted challenges faced by ASSBs, the PIs have assembled a multi-disciplinary team and will work with international partners with synergistic expertise, particularly with Prof. Braga at University of Porto, Portugal – the inventor of a new solid Li-glass electrolyte with ultrahigh ionic conductivity at room temperature ( 10-2 S/cm), wide electrochemical window (stable with Li metal and resistant to oxidation up to 8 V vs. Li/Li+), and low glass transition temperature (~75oC). The team will investigate and integrate conventional and unconventional charge storage mechanisms to achieve ultrahigh specific energy, high power, long cycle life ASSBs with intrinsic safety. Anode-free cells with Li plating/stripping at both anode and cathode enabled by Li-glass electrolyte will be studied for the first time. The electrochemical principles for such Li plating/stripping cells and those for anode-free cells with Li plating/stripping at the anode and de/intercalation at the cathode will be established to offer guidelines for design of ASSBs with unprecedented specific energies. In-situ and ex-situ characterizations will be performed to unravel the underlying mechanisms controlling interfacial properties of ASSBs. Density functional theory calculations, molecular dynamics and continuum models will be used and integrated to address the multi-length scale modeling from the electrode/electrolyte interface to single particle, multiple particles, and eventually to cell-level responses. The atomic level, sub-continuum level and cell-level understandings developed from these modeling efforts will assist the fundamental understanding of chemical/electrochemical stability between the electrode and Li-glass electrolyte, mechanical contact, Li plating/stripping, Li dendrite formation, ionic transport, and degradation physics of ASSBs. Through these scientific advancements, this PIRE project will lay a solid foundation for design, synthesis and fabrication of high-performance ASSBs at scale in the future.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
第一部分,非技术性减少温室气体排放对于应对气候变化这一重大挑战至关重要。可再生能源整合和汽车电气化是减少温室气体排放的关键,需要大规模、安全、低成本的能源储存。该团队将进行基础研究,以推进全固态电池(assb)的科学和技术,通过提供与锂离子电池(lib)相比,在电池单元和电池组级别具有更高比能量、更长的循环寿命、更低的成本和更高的安全性的下一代能量存储设备,assb有潜力将可充电电池转化为汽车电气化和可再生能源集成。预期的经济效益(在能源基础上电池组的成本比lib降低50%)以及前所未有的电化学性能(比能量提高150%)和内在安全性将迎来汽车电气化和可再生能源整合的新时代,为可持续发展的清洁能源社会服务。通过与来自欧洲7个机构的国际合作伙伴合作,研究人员将实现在assb中推进科学和技术的具有挑战性的目标。通过与工业伙伴的合作,研究小组将加快从实验室发现到商业产品的技术转化。此外,他们将与芝加哥几所少数族裔服务的小学、初中和高中合作,激励被忽视的少数族裔学生追求STEM教育和职业。通过与芝加哥市合作,研究人员将启动一项劳动力发展计划,为处于职业生涯中期的员工和未被充分代表的少数民族提供短期课程和讲习班,这可以加速劳动力向清洁能源、电动汽车和能源存储行业的过渡。为了解决assb面临的多方面挑战,pi已经组建了一个多学科的团队,并将与具有协同专业知识的国际合作伙伴合作,特别是与葡萄牙波尔图大学的Braga教授合作。Braga教授发明了一种新型固体锂玻璃电解质,在室温下具有超高离子电导率(10-2 S/cm),宽电化学窗口(与Li金属稳定,抗氧化高达8 V)。玻璃化转变温度低(~75℃)。该团队将研究并整合传统和非常规的电荷存储机制,以实现具有本质安全性的超高比能、高功率、长循环寿命的assb。本文首次研究了锂玻璃电解液在阳极和阴极同时镀/剥离锂的无阳极电池。建立这种镀锂/剥离电池的电化学原理,以及在阳极镀锂/剥离、在阴极脱嵌锂的无阳极电池的电化学原理,为设计具有空前比能的assb提供指导。将进行原位和非原位表征,以揭示控制assb界面性质的潜在机制。密度泛函理论计算、分子动力学和连续介质模型将被用于解决从电极/电解质界面到单粒子、多粒子,最终到细胞水平响应的多长度尺度建模。从这些建模工作中得到的原子水平、亚连续统水平和细胞水平的理解将有助于基本理解电极和锂玻璃电解质之间的化学/电化学稳定性、机械接触、锂电镀/剥离、锂枝晶形成、离子传输和assb的降解物理。通过这些科学进步,该PIRE项目将为未来大规模设计、合成和制造高性能assb奠定坚实的基础。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Leon Shaw其他文献
High-Speed Additive Manufacturing Through High-Aspect-Ratio Nozzles
- DOI:
10.1007/s11837-017-2729-4 - 发表时间:
2018-01-16 - 期刊:
- 影响因子:2.300
- 作者:
Leon Shaw;Mashfiqul Islam;Jie Li;Ling Li;S. M. Imran Ayub - 通讯作者:
S. M. Imran Ayub
Modeling and Analysis of High-Energy Ball Milling Through Attritors
- DOI:
10.1007/s11661-017-4195-6 - 发表时间:
2017-07-05 - 期刊:
- 影响因子:2.500
- 作者:
Xuzhe Zhao;Leon Shaw - 通讯作者:
Leon Shaw
Investigating TEP as a greener alternative to NMP in Ni-rich cathode fabrication
在富镍正极制造中研究三乙撑二胺作为 NMP 的绿色替代品
- DOI:
10.1016/j.jechem.2022.12.006 - 发表时间:
2023-03-01 - 期刊:
- 影响因子:14.900
- 作者:
Changlong Chen;Vignyatha Reddy Tatagari;Hao Lin;Leon Shaw - 通讯作者:
Leon Shaw
Leon Shaw的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Leon Shaw', 18)}}的其他基金
I-Corps: Silicon(Si)-based Rechargeable Batteries
I-Corps:硅 (Si) 基可充电电池
- 批准号:
1922937 - 财政年份:2019
- 资助金额:
$ 149.99万 - 项目类别:
Standard Grant
PFI-TT: Rechargeable Batteries with Ultrafast Charging Capability and Long Usage Time per Charge
PFI-TT:具有超快充电能力和每次充电使用时间长的充电电池
- 批准号:
1918991 - 财政年份:2019
- 资助金额:
$ 149.99万 - 项目类别:
Standard Grant
Scalable Manufacturing of Hierarchical Silicon/Carbon Nanocomposite Anodes for Next Generation Batteries
用于下一代电池的分层硅/碳纳米复合阳极的可扩展制造
- 批准号:
1660572 - 财政年份:2017
- 资助金额:
$ 149.99万 - 项目类别:
Standard Grant
Mechanical Activation Enhanced Solid-State Reaction and Electrochemical Properties of NaCrO2
NaCrO2 的机械活化增强固相反应及电化学性能
- 批准号:
1709959 - 财政年份:2017
- 资助金额:
$ 149.99万 - 项目类别:
Continuing Grant
PFI:AIR-TT: WC/Co Materials with High Hardness and Toughness Simultaneously Enabled by the WC Platelet Microstructure
PFI:AIR-TT:WC片状微观结构同时具有高硬度和韧性的WC/Co材料
- 批准号:
1414021 - 财政年份:2014
- 资助金额:
$ 149.99万 - 项目类别:
Standard Grant
Multi-Material, Multi-Layer Devices Enabled by High Aspect Ratio Micro-Extrusion
高纵横比微挤压实现多材料、多层器件
- 批准号:
1331735 - 财政年份:2013
- 资助金额:
$ 149.99万 - 项目类别:
Standard Grant
Novel Supercapacitors with Ultrahigh Energy Densities
具有超高能量密度的新型超级电容器
- 批准号:
1252924 - 财政年份:2012
- 资助金额:
$ 149.99万 - 项目类别:
Standard Grant
Scalable Manufacturing of Novel Hydrogen Storage Materials with Control at Nanometer Length Scales
纳米长度尺度控制的新型储氢材料的可扩展制造
- 批准号:
1261782 - 财政年份:2012
- 资助金额:
$ 149.99万 - 项目类别:
Standard Grant
Scalable Manufacturing of Novel Hydrogen Storage Materials with Control at Nanometer Length Scales
纳米长度尺度控制的新型储氢材料的可扩展制造
- 批准号:
1228888 - 财政年份:2012
- 资助金额:
$ 149.99万 - 项目类别:
Standard Grant
Functionally Graded Orthopedic Implants via the Slurry Mixing and Dispensing Process
通过浆料混合和分配过程实现功能分级骨科植入物
- 批准号:
1312289 - 财政年份:2012
- 资助金额:
$ 149.99万 - 项目类别:
Continuing Grant
相似海外基金
IUCRC Phase I: South Dakota School of Mines and Technology: Center for Solid-State Electric Power Storage (CEPS)
IUCRC 第一阶段:南达科他州矿业与技术学院:固态电力存储中心 (CEPS)
- 批准号:
2052631 - 财政年份:2021
- 资助金额:
$ 149.99万 - 项目类别:
Continuing Grant
IUCRC Phase I: Syracuse University: Center for Solid-State Electric Power Storage (CEPS)
IUCRC 第一阶段:雪城大学:固态电力存储中心 (CEPS)
- 批准号:
2052611 - 财政年份:2021
- 资助金额:
$ 149.99万 - 项目类别:
Continuing Grant
IUCRC Phase I: Northeastern University: Center for Solid-State Electric Power Storage (CEPS)
IUCRC第一阶段:东北大学:固态电力存储中心(CEPS)
- 批准号:
2052796 - 财政年份:2021
- 资助金额:
$ 149.99万 - 项目类别:
Continuing Grant
Planning IUCRC at SDSU Site: Center for Solid-State Green Electric Power Generation and Storage (CEPS)
在 SDSU 场地规划 IUCRC:固态绿色发电和存储中心 (CEPS)
- 批准号:
1841502 - 财政年份:2019
- 资助金额:
$ 149.99万 - 项目类别:
Standard Grant
Planning IUCRC at University of South Dakota: Center for Solid-State Green Electric Power Generation and Storage (CEPS)
南达科他大学规划 IUCRC:固态绿色发电和存储中心 (CEPS)
- 批准号:
1841518 - 财政年份:2019
- 资助金额:
$ 149.99万 - 项目类别:
Standard Grant
Planning IUCRC at Northeastern University: Center for Solid-State Green Electric Power Generation and Storage (CEPS)
东北大学规划IUCRC:固态绿色发电与存储中心(CEPS)
- 批准号:
1841512 - 财政年份:2019
- 资助金额:
$ 149.99万 - 项目类别:
Standard Grant
Planning IUCRC at SDSMT: Center for Solid-State Green Electric Power Generation and Storage (CEPS)
在SDSMT规划IUCRC:固态绿色发电和存储中心(CEPS)
- 批准号:
1841437 - 财政年份:2019
- 资助金额:
$ 149.99万 - 项目类别:
Standard Grant
Planning IUCRC at Columbia University: Center for Biological Applications of Solid-State Systems (C-BASS)
哥伦比亚大学规划 IUCRC:固态系统生物应用中心 (C-BASS)
- 批准号:
1822143 - 财政年份:2018
- 资助金额:
$ 149.99万 - 项目类别:
Standard Grant
Planning IUCRC at City University of New York: Center for Biological Applications of Solid-State Systems (CBASS)
纽约城市大学规划 IUCRC:固态系统生物应用中心 (CBASS)
- 批准号:
1822149 - 财政年份:2018
- 资助金额:
$ 149.99万 - 项目类别:
Standard Grant
Planning IUCRC at Harvard University: Center for Biological Applications of Solid-State Systems (CBASS)
哈佛大学规划 IUCRC:固态系统生物应用中心 (CBASS)
- 批准号:
1822151 - 财政年份:2018
- 资助金额:
$ 149.99万 - 项目类别:
Standard Grant