Center of All-Solid-State Batteries for a Clean Energy Society
清洁能源社会全固态电池中心
基本信息
- 批准号:2230770
- 负责人:
- 金额:$ 149.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-01-01 至 2025-12-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Part 1, non-technicalReducing greenhouse gas emissions is critical to address the grand challenge of climate change. Renewable energy integration and vehicle electrification, keys to reducing greenhouse gas emissions, require energy storage at scale with safety and low cost. This PIRE team will conduct fundamental research to advance science and technology of all-solid-state batteries (ASSBs), which have the potential to transform rechargeable batteries for vehicle electrification and integration of renewable energy by offering next-generation energy storage devices with higher specific energy at both battery-cell and battery-pack levels, longer cycle life, lower cost and superior safety compared to Li-ion batteries (LIBs). The anticipated economic benefit (reduction in the cost of battery packs on the energy base by 50% over LIBs) along with unprecedented electrochemical performance (150% increase in the specific energy) and intrinsic safety will usher in a new era of vehicle electrification and renewable energy integration for a sustainable society with clean energy. By working with international partners from 7 institutions in Europe, the researchers will achieve the challenging goal of advancing science and technology in ASSBs. Through collaboration with industrial partners, the research team will expedite technology translation from laboratory discovery to commercial products. Further, they will collaborate with several minority-serving elementary, middle and high schools in Chicago to inspire underrepresented minority students to pursue STEM education and career. By working with City of Chicago, the researchers will launch a workforce development program, offering short courses and workshops to mid-career employees and underrepresented minorities, which can accelerate transition of the workforce into clean energy, electric vehicle, and energy storage industries.Part 2, technicalTo address the multi-faceted challenges faced by ASSBs, the PIs have assembled a multi-disciplinary team and will work with international partners with synergistic expertise, particularly with Prof. Braga at University of Porto, Portugal – the inventor of a new solid Li-glass electrolyte with ultrahigh ionic conductivity at room temperature ( 10-2 S/cm), wide electrochemical window (stable with Li metal and resistant to oxidation up to 8 V vs. Li/Li+), and low glass transition temperature (~75oC). The team will investigate and integrate conventional and unconventional charge storage mechanisms to achieve ultrahigh specific energy, high power, long cycle life ASSBs with intrinsic safety. Anode-free cells with Li plating/stripping at both anode and cathode enabled by Li-glass electrolyte will be studied for the first time. The electrochemical principles for such Li plating/stripping cells and those for anode-free cells with Li plating/stripping at the anode and de/intercalation at the cathode will be established to offer guidelines for design of ASSBs with unprecedented specific energies. In-situ and ex-situ characterizations will be performed to unravel the underlying mechanisms controlling interfacial properties of ASSBs. Density functional theory calculations, molecular dynamics and continuum models will be used and integrated to address the multi-length scale modeling from the electrode/electrolyte interface to single particle, multiple particles, and eventually to cell-level responses. The atomic level, sub-continuum level and cell-level understandings developed from these modeling efforts will assist the fundamental understanding of chemical/electrochemical stability between the electrode and Li-glass electrolyte, mechanical contact, Li plating/stripping, Li dendrite formation, ionic transport, and degradation physics of ASSBs. Through these scientific advancements, this PIRE project will lay a solid foundation for design, synthesis and fabrication of high-performance ASSBs at scale in the future.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
第1部分,非技术减少温室气体排放对于应对气候变化的巨大挑战至关重要。可再生能源集成和车辆电气化,减少温室气体排放的钥匙需要安全性和低成本的能量存储。 This PIRE team will conduct fundamental research to advance science and technology of all-solid-state batteries (ASSBs), which have the potential to transform rechargeable batteries for vehicle electrification and integration of renewable energy by offering next-generation energy storage devices with higher specific energy at both battery-cell and battery-pack levels, longer cycle life, lower cost and superior safety compared to Li-ion batteries (LIBs).预期的经济利益(将电池组在能源基础上的成本降低了50%,而不是LIB),以及前所未有的电化学性能(特定能源的提高150%)和内在的安全性将在车辆电气化的新时代和可再生能源综合时代,从而使可持续的能源与清洁能源进行可持续的能源整合。通过与欧洲7家机构的国际合作伙伴合作,研究人员将实现促进ASSB中科学和技术的挑战目标。通过与工业合作伙伴的合作,研究团队将加快从实验室发现到商业产品的技术翻译。此外,他们将与芝加哥的几所小学,中学和高中合作,以激发代表性不足的少数族裔学生从事STEM教育和职业。 By working with City of Chicago, the researchers will launch a workforce development program, offering short courses and workshops to mid-career employees and underrepresented minorities, which can accelerate transition of the workforce into clean energy, electric vehicle, and energy storage industries.Part 2, technicalTo address the Multi-faceted challenges faced by ASSBs, the PIs have assembled a multi-disciplinary team and will work with international partners with协同专业知识,尤其是葡萄牙波尔托大学的布拉加教授,这是新的固体Li-Glass电解质的发明者,具有超高离子电导率在室温下(10-2 s/cm)(10-2 s/cm),宽的电化学窗口(用LI金属稳定,具有LI金属稳定,可抗氧化,可抗氧化8 V vs. li/li/li/li/li/li+li/li+li/li li Li/li folow玻璃的过渡温度(〜7555)。该团队将调查并整合常规和非常规的电荷存储机制,以实现具有内在安全性的超高特定能量,高功率,长期寿命。 Li-Glass电解质启用的阳极和阴极均具有LI板/剥离的无阳极细胞将首次研究。将建立此类LI镀金/剥离细胞的电化学原理以及在阳极处使用LI板和剥离的无阳极细胞的电化学原理,并在阴极处建立DE/Intercalation,以提供具有前所未有的特定能量的Assb的设计指南。将执行原位和原位字符,以揭示控制ASSB的界面特性的基本机制。密度功能理论计算,分子动力学和持续模型将被使用并集成,以解决从电极/电解质界面到单个粒子,多个粒子,有时甚至细胞级响应的多长度尺度建模。这些建模工作从这些建模工作中得出的原子水平,亚爆发水平和细胞水平的理解将有助于对电极和Li-Glass电解质之间的化学/电化学稳定性,机械接触,Li Plating/剥离,Li树突形成,离子运输,离子运输和降解物理学的基本理解。通过这些科学的进步,这个PIRE项目将在未来大规模设计,合成和制造高性能的设计奠定坚实的基础。该奖项反映了NSF的法定任务,并被认为是通过基金会的智力优点和更广泛的影响审查标准通过评估来获得的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Leon Shaw其他文献
Leon Shaw的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Leon Shaw', 18)}}的其他基金
I-Corps: Silicon(Si)-based Rechargeable Batteries
I-Corps:硅 (Si) 基可充电电池
- 批准号:
1922937 - 财政年份:2019
- 资助金额:
$ 149.99万 - 项目类别:
Standard Grant
PFI-TT: Rechargeable Batteries with Ultrafast Charging Capability and Long Usage Time per Charge
PFI-TT:具有超快充电能力和每次充电使用时间长的充电电池
- 批准号:
1918991 - 财政年份:2019
- 资助金额:
$ 149.99万 - 项目类别:
Standard Grant
Scalable Manufacturing of Hierarchical Silicon/Carbon Nanocomposite Anodes for Next Generation Batteries
用于下一代电池的分层硅/碳纳米复合阳极的可扩展制造
- 批准号:
1660572 - 财政年份:2017
- 资助金额:
$ 149.99万 - 项目类别:
Standard Grant
Mechanical Activation Enhanced Solid-State Reaction and Electrochemical Properties of NaCrO2
NaCrO2 的机械活化增强固相反应及电化学性能
- 批准号:
1709959 - 财政年份:2017
- 资助金额:
$ 149.99万 - 项目类别:
Continuing Grant
PFI:AIR-TT: WC/Co Materials with High Hardness and Toughness Simultaneously Enabled by the WC Platelet Microstructure
PFI:AIR-TT:WC片状微观结构同时具有高硬度和韧性的WC/Co材料
- 批准号:
1414021 - 财政年份:2014
- 资助金额:
$ 149.99万 - 项目类别:
Standard Grant
Multi-Material, Multi-Layer Devices Enabled by High Aspect Ratio Micro-Extrusion
高纵横比微挤压实现多材料、多层器件
- 批准号:
1331735 - 财政年份:2013
- 资助金额:
$ 149.99万 - 项目类别:
Standard Grant
Novel Supercapacitors with Ultrahigh Energy Densities
具有超高能量密度的新型超级电容器
- 批准号:
1252924 - 财政年份:2012
- 资助金额:
$ 149.99万 - 项目类别:
Standard Grant
Scalable Manufacturing of Novel Hydrogen Storage Materials with Control at Nanometer Length Scales
纳米长度尺度控制的新型储氢材料的可扩展制造
- 批准号:
1261782 - 财政年份:2012
- 资助金额:
$ 149.99万 - 项目类别:
Standard Grant
Scalable Manufacturing of Novel Hydrogen Storage Materials with Control at Nanometer Length Scales
纳米长度尺度控制的新型储氢材料的可扩展制造
- 批准号:
1228888 - 财政年份:2012
- 资助金额:
$ 149.99万 - 项目类别:
Standard Grant
Functionally Graded Orthopedic Implants via the Slurry Mixing and Dispensing Process
通过浆料混合和分配过程实现功能分级骨科植入物
- 批准号:
1312289 - 财政年份:2012
- 资助金额:
$ 149.99万 - 项目类别:
Continuing Grant
相似国自然基金
钻进坚硬岩层的梯度结构PDC应力调控机制与3D打印制备技术研究
- 批准号:42372358
- 批准年份:2023
- 资助金额:53.00 万元
- 项目类别:面上项目
坚硬岩层破断诱发巷道冲击地压模拟的连续-非连续方法研究及应用
- 批准号:
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:
基于中厚板理论的坚硬厚顶板破断致灾机制与控制准则
- 批准号:
- 批准年份:2019
- 资助金额:60 万元
- 项目类别:面上项目
裂隙性坚硬隧道围岩的岩爆机理及强度模型研究
- 批准号:51808458
- 批准年份:2018
- 资助金额:28.0 万元
- 项目类别:青年科学基金项目
3D打印栅格状胎体刀刃化唇面对金刚石钻头破碎坚硬岩层的影响机制研究
- 批准号:41872186
- 批准年份:2018
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
Characterizing stem cell-like B cell subpopulations and dissecting their role in tumorigenesis
表征干细胞样 B 细胞亚群并剖析它们在肿瘤发生中的作用
- 批准号:
10720153 - 财政年份:2023
- 资助金额:
$ 149.99万 - 项目类别:
Mechanisms and vulnerabilities of ERG-driven luminal fate in prostate cancer
前列腺癌中 ERG 驱动的管腔命运的机制和脆弱性
- 批准号:
10572836 - 财政年份:2023
- 资助金额:
$ 149.99万 - 项目类别:
Multimodal Marker for imaging oximetry in radiotherapy
用于放射治疗中成像血氧测定的多模态标记物
- 批准号:
10818101 - 财政年份:2023
- 资助金额:
$ 149.99万 - 项目类别:
RM1 Center on Macromolecular Dynamics by NMR Spectroscopy at the New York Structural Biology Center (CoMD/NMR)
纽约结构生物学中心 (CoMD/NMR) 的 RM1 核磁共振波谱大分子动力学中心
- 批准号:
10654062 - 财政年份:2022
- 资助金额:
$ 149.99万 - 项目类别:
RM1 Center on Macromolecular Dynamics by NMR Spectroscopy at the New York Structural Biology Center (CoMD/NMR)
纽约结构生物学中心 (CoMD/NMR) 的 RM1 核磁共振波谱大分子动力学中心
- 批准号:
10412493 - 财政年份:2022
- 资助金额:
$ 149.99万 - 项目类别: