CAREER: Automatic Generation of High Efficiency Graphics Systems

职业:自动生成高效图形系统

基本信息

  • 批准号:
    1253530
  • 负责人:
  • 金额:
    $ 50.39万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-03-15 至 2018-02-28
  • 项目状态:
    已结题

项目摘要

The next generation of visual computing applications will require graphics systems to execute within a wide range of computing environments (from embedded devices to supercomputers) and be both more powerful and orders of magnitude more efficient than existing systems today. Unfortunately, creating efficient rendering solutions for any one platform or any one class of workloads is currently a laborious, expert-level task whose difficulty discourages innovation in interactive graphics techniques and graphics hardware architecture. In response, the PI is developing technologies that, given knowledge of a virtual scene, a specific rendering task, and parallel hardware platform, can automatically generate an optimized graphics system implementation specialized for this context. The core idea is to develop unifying representations for the large space of algorithmic approaches to key rendering problems such as surface visibility and shading and then to leverage these representations in new intelligent renderer compilation systems that identity efficient algorithms for a given workload and machine context. In this system, selecting appropriate algorithms is as much a part of the renderer compilation process as synthesis of high performance code. Defining new core graphics programming abstractions that embody these parameterized algorithmic spaces, exploring their application scope, and determining what graphics domain knowledge is fundamental to automating graphics system optimization are significant research components of this project. A second component of the project involves modeling and characterizing graphics system behavior in order to guide automated discovery of efficient solutions.Graphics system performance is a fundamental enabler of new visual computing applications. In particular, project success stands to catalyze the impact of visual computing in mobile and embedded environments, where photorealistic augmented reality and high-resolution display of information will be transformative to tasks such as navigation, worker training, as well as new forms of digital entertainment and the arts. Success also stands to have cross-disciplinary benefit to the domain of scientific computing, as hardware, software, and compilation technologies developed for graphics acceleration continue to have widespread impact on the advancement of general parallel computing. High-performance visual computing topics will be used as a central component of efforts to modernize parallel computing education. The results of this effort will be available to the public as an on-line textbook and web reference for modern parallel computing. The project web site (http://graphics.cs.cmu.edu/projects/renderergenerator/) provides additional information on the project.
下一代视觉计算应用程序将需要图形系统在广泛的计算环境中执行(从嵌入式设备到超级计算机),并且比现有系统更强大,效率更高。不幸的是,为任何一个平台或任何一类工作负载创建高效的渲染解决方案目前都是一项费力的、专家级别的任务,其难度阻碍了交互图形技术和图形硬件架构的创新。作为回应,PI正在开发技术,给定虚拟场景的知识,特定的渲染任务和并行硬件平台,可以自动生成专门针对此上下文的优化图形系统实现。核心思想是为关键渲染问题(如表面可见性和阴影)的大量算法方法开发统一的表示,然后在新的智能渲染器编译系统中利用这些表示,为给定的工作负载和机器上下文识别有效的算法。在这个系统中,选择合适的算法和合成高性能代码一样,都是渲染器编译过程的一部分。定义包含这些参数化算法空间的新的核心图形编程抽象,探索它们的应用范围,并确定哪些图形领域知识是自动化图形系统优化的基础,这是该项目的重要研究组成部分。项目的第二个组成部分包括建模和描述图形系统行为,以便指导自动发现有效的解决方案。图形系统性能是新的视觉计算应用程序的基本实现因素。特别是,项目的成功将促进视觉计算在移动和嵌入式环境中的影响,在这些环境中,逼真的增强现实和高分辨率信息显示将对导航、工人培训以及新形式的数字娱乐和艺术等任务产生革命性的影响。由于为图形加速开发的硬件、软件和编译技术继续对通用并行计算的发展产生广泛的影响,因此,成功也将对科学计算领域产生跨学科的好处。高性能视觉计算主题将作为并行计算教育现代化的核心组成部分。这项工作的成果将作为现代并行计算的在线教科书和网络参考资料提供给公众。该项目的网站(http://graphics.cs.cmu.edu/projects/renderergenerator/)提供了有关该项目的更多信息。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kayvon Fatahalian其他文献

Fast and Three-rious: Speeding Up Weak Supervision with Triplet Methods
快速且三重:用三元组方法加速弱监督
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Daniel Y. Fu;Mayee F. Chen;Frederic Sala;Sarah Hooper;Kayvon Fatahalian;Christopher Ré
  • 通讯作者:
    Christopher Ré
Vid2Player: Controllable Video Sprites That Behave and Appear Like Professional Tennis Players
Vid2Player:行为和外观像职业网球运动员的可控视频精灵
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    Haotian Zhang;Cristobal Sciutto;Maneesh Agrawala;Kayvon Fatahalian
  • 通讯作者:
    Kayvon Fatahalian
Creating an Agile Hardware Design Flow
创建敏捷的硬件设计流程
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rick Bahr;Clark W. Barrett;Nikhil Bhagdikar;Alex Carsello;Ross G. Daly;Caleb Donovick;David Durst;Kayvon Fatahalian;Kathleen Feng;P. Hanrahan;Teguh Hofstee;M. Horowitz;Dillon Huff;Fredrik Kjolstad;Taeyoung Kong;Qiaoyi Liu;Makai Mann;J. Melchert;Ankita Nayak;Aina Niemetz;Gedeon Nyengele;Priyanka Raina;Stephen Richardson;Rajsekhar Setaluri;Jeff Setter;Kavya Sreedhar;Maxwell Strange;James J. Thomas;Christopher Torng;Lenny Truong;Nestan Tsiskaridze;Keyi Zhang
  • 通讯作者:
    Keyi Zhang
Type-directed scheduling of streaming accelerators
流加速器的类型定向调度
Finding Layers Using Hover Visualizations
使用悬停可视化查找图层
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Evan Shimizu;Matt Fisher;Sylvain Paris;Kayvon Fatahalian
  • 通讯作者:
    Kayvon Fatahalian

Kayvon Fatahalian的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kayvon Fatahalian', 18)}}的其他基金

III: Small: A Query System for Rapid Audiovisual Analysis of Large-Scale Video Collections
三:小型:大规模视频采集快速视听分析的查询系统
  • 批准号:
    1908727
  • 财政年份:
    2019
  • 资助金额:
    $ 50.39万
  • 项目类别:
    Continuing Grant
VEC: Small: Collaborative Research: The Visual Computing Database: A Platform for Visual Data Processing and Analysis at Internet Scale
VEC:小型:协作研究:视觉计算数据库:互联网规模的视觉数据处理和分析平台
  • 批准号:
    1539069
  • 财政年份:
    2015
  • 资助金额:
    $ 50.39万
  • 项目类别:
    Continuing Grant
RI: Small: Using Prediction to Build a Compact Visual Memex Memory for Rapid Analysis and Understanding of Egocentric Video Data
RI:小型:使用预测构建紧凑的视觉 Memex 存储器,以快速分析和理解以自我为中心的视频数据
  • 批准号:
    1422767
  • 财政年份:
    2014
  • 资助金额:
    $ 50.39万
  • 项目类别:
    Continuing Grant

相似海外基金

Construction of Integrated Story Foundation Dataset for Automatic Generation Using Hierarchical Structure
利用层次结构自动生成集成故事基础数据集的构建
  • 批准号:
    23K11772
  • 财政年份:
    2023
  • 资助金额:
    $ 50.39万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Automatic generation of vignette illustrations
自动生成小插图
  • 批准号:
    23K18468
  • 财政年份:
    2023
  • 资助金额:
    $ 50.39万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Interactive Semi-automatic Generation And Assessment Of Design Alternatives In Engineering
工程中设计方案的交互式半自动生成和评估
  • 批准号:
    2891552
  • 财政年份:
    2023
  • 资助金额:
    $ 50.39万
  • 项目类别:
    Studentship
Online Automatic Generation of Model Predictive Controllers for Multiple Driving Tasks
在线自动生成多个驾驶任务的模型预测控制器
  • 批准号:
    23KJ1067
  • 财政年份:
    2023
  • 资助金额:
    $ 50.39万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Development of general-purpose picking hand and its automatic grasping motion generation based on object set in logistics field
物流领域通用拣选手的研制及其基于对象集的自动抓取动作生成
  • 批准号:
    23K11273
  • 财政年份:
    2023
  • 资助金额:
    $ 50.39万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
SaTC: CORE: Small: Sound Automatic Exploit Generation
SaTC:核心:小:声音自动漏洞利用生成
  • 批准号:
    2234257
  • 财政年份:
    2023
  • 资助金额:
    $ 50.39万
  • 项目类别:
    Continuing Grant
Automatic generation of surgical plans using the patient's digital twin
使用患者的数字孪生自动生成手术计划
  • 批准号:
    23K18486
  • 财政年份:
    2023
  • 资助金额:
    $ 50.39万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
CAREER: Enhancing the Robustness of Human-Robot Interactions via Automatic Scenario Generation
职业:通过自动场景生成增强人机交互的鲁棒性
  • 批准号:
    2145077
  • 财政年份:
    2022
  • 资助金额:
    $ 50.39万
  • 项目类别:
    Continuing Grant
Automatic response generation with reasoning, personalized knowledge graphs and emotional intelligence.
通过推理、个性化知识图和情商自动生成响应。
  • 批准号:
    RGPIN-2020-04440
  • 财政年份:
    2022
  • 资助金额:
    $ 50.39万
  • 项目类别:
    Discovery Grants Program - Individual
Automatic Service and Microservices Design, Generation, and Interfacing in the Context of Service Oriented Architecture
面向服务架构背景下的自动服务和微服务设计、生成和接口
  • 批准号:
    RGPIN-2018-06723
  • 财政年份:
    2022
  • 资助金额:
    $ 50.39万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了