CAREER: Electroelastic Dynamics of Flexible Piezoelectric Composites for Enhanced Biomimetic Locomotion and Energy Harvesting

职业:用于增强仿生运动和能量收集的柔性压电复合材料的电弹性动力学

基本信息

  • 批准号:
    1254262
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-08-01 至 2019-07-31
  • 项目状态:
    已结题

项目摘要

The research objective of this Faculty Early Career Development (CAREER) Program award is to understand and leverage the electroelastic dynamics of flexible piezoelectric composites for next-generation biomimetic locomotion and energy harvesting. Due to their robustness, structural flexibility, high energy density, and well-balanced force-deflection capabilities, fiber-based piezoelectric composites with interdigitated electrodes can be employed in various applications ranging from structural sensors/actuators and energy harvesters to bio-inspired aquatic and aerial vehicles. This research will establish a unified mathematical framework with experimental validations for complex dynamics of fiber-based piezoelectric composites for low-to-high mechanical and electrical excitation levels in the presence of two-way coupling. The technical approach is based on the synthesis of materially and geometrically nonlinear non-conservative electroelastic structural dynamic models with controlled experiments to explore and understand the effects of various parameters on the coupled system dynamics. Specifically, this research will lead to an unprecedented multifunctional nonlinear dynamical system platform that combines biomimetic locomotion and energy harvesting. If successful, this project will result in electroelastic models and structural concepts that can be exploited in various applications, ranging from structural shape control and adaptive stiffness change to bio-inspired aquatic/aerial robotics as well as energy harvesting from deterministic and stochastic dynamical systems. Potential high-impact applications of enhanced aquatic locomotion and vibrational energy harvesting span from sustainability in marine environments and effective drug delivery to battery-less medical implants and energy-autonomous wireless sensor networks in structural health monitoring. This project will also reach and inspire a large number of underrepresented and minority K-12 students and their teachers through a complementary and engaging educational plan, prepared in collaboration with the Center for Education Integrating Science, Mathematics, and Computing (CEISMC) at Georgia Tech. The educational and outreach activities include the hosting of Georgia Intern-Fellowship Teachers (GIFT) and high school students for research on dynamical systems involving smart structures, aquatic locomotion, and energy harvesting.
该学院早期职业发展(CAREER)计划奖的研究目标是了解和利用柔性压电复合材料的电弹性动力学,用于下一代仿生运动和能量收集。由于它们的鲁棒性、结构柔性、高能量密度和良好平衡的力偏转能力,具有叉指电极的基于纤维的压电复合材料可以用于从结构传感器/致动器和能量采集器到生物启发的水上和空中车辆的各种应用中。本研究将建立一个统一的数学框架与实验验证的复杂动力学的纤维基压电复合材料的低到高的机械和电气激励水平的存在下的双向耦合。该技术方法基于材料和几何非线性非保守电弹性结构动力学模型的合成,并进行受控实验,以探索和了解各种参数对耦合系统动力学的影响。具体来说,这项研究将导致一个前所未有的多功能非线性动力系统平台,结合仿生运动和能量收集。如果成功,该项目将产生电弹性模型和结构概念,可用于各种应用,从结构形状控制和自适应刚度变化到生物启发的水生/空中机器人,以及从确定性和随机动力系统中获取能量。增强的水上运动和振动能量收集的潜在高影响应用范围从海洋环境的可持续性和有效的药物输送到无电池医疗植入物和结构健康监测中的能量自主无线传感器网络。该项目还将通过与格鲁吉亚理工学院的教育整合科学、数学和计算中心(CEISMC)合作制定的补充性和参与性教育计划,接触并激励大量代表性不足和少数民族的K-12学生及其教师。教育和推广活动包括主办格鲁吉亚实习研究金教师(GIFT)和高中学生,研究涉及智能结构,水上运动和能量收集的动力系统。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alper Erturk其他文献

Topological interface modes in 3D-printed triply periodic minimal surface phononic crystals
三维打印三重周期最小表面声子晶体中的拓扑界面模式
  • DOI:
    10.1016/j.matdes.2025.113749
  • 发表时间:
    2025-04-01
  • 期刊:
  • 影响因子:
    7.900
  • 作者:
    Prabhakaran Manogharan;Alper Erturk
  • 通讯作者:
    Alper Erturk
Ultrasound-Powered Wireless Underwater Acoustic Identification Tags for Backscatter Communication
用于反向散射通信的超声波供电无线水下声学识别标签
High-fidelity analysis and experiments of a wireless sensor node with a built-in supercapacitor powered by piezoelectric vibration energy harvesting
  • DOI:
    10.1016/j.ymssp.2024.112147
  • 发表时间:
    2025-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Takaharu Yamada;Haruhiko Asanuma;Yushin Hara;Alper Erturk
  • 通讯作者:
    Alper Erturk
The ultrasonographic evaluation of caudal vena cava diameter before and after fluid replacement in neonatal dehydrated calves with diarrhea
腹泻新生脱水犊牛补液前后尾静脉直径的超声评估
  • DOI:
    10.1186/s12917-025-04759-z
  • 发表时间:
    2025-07-02
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Alper Erturk;Mutlu Sevinc
  • 通讯作者:
    Mutlu Sevinc
Experimental and numerical investigation of self-heating effects on the through-metal ultrasonic power transfer efficiency
自热效应对穿金属超声功率传输效率影响的实验与数值研究
  • DOI:
    10.1016/j.ultras.2025.107696
  • 发表时间:
    2025-11-01
  • 期刊:
  • 影响因子:
    4.100
  • 作者:
    Allen Zhou;Prabhakaran Manogharan;Kevin Dix;Ihab El-Kady;Alper Erturk
  • 通讯作者:
    Alper Erturk

Alper Erturk的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alper Erturk', 18)}}的其他基金

Coupling Skull-Brain Vibroacoustics and Ultrasound Toward Enhanced Imaging, Diagnosis, and Therapy
颅脑振动声学和超声的耦合以增强成像、诊断和治疗
  • 批准号:
    1933158
  • 财政年份:
    2019
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
LEAP-HI: Investigation of coupled skull-brain vibroacoustics and ultrasound toward enhanced therapy and diagnosis
LEAP-HI:研究耦合颅脑振动声学和超声以增强治疗和诊断
  • 批准号:
    1830577
  • 财政年份:
    2018
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Dynamics of Contactless Ultrasonic Power Transfer for Wireless Devices
无线设备非接触式超声波功率传输的动力学
  • 批准号:
    1727951
  • 财政年份:
    2017
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: Generating Electricity from Deformation: Multiscale Modeling and Characterization of Flexoelectricity from Atoms to Devices
合作研究:变形发电:从原子到设备的柔性电的多尺度建模和表征
  • 批准号:
    1463339
  • 财政年份:
    2015
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Metamaterial-Enhanced Electroelastoacoustic Energy Harvesting for Sensor Systems
用于传感器系统的超材料增强电弹声能量收集
  • 批准号:
    1333978
  • 财政年份:
    2013
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant

相似海外基金

Understanding 3D hydrodynamics of active electroelastic materials in complex multimodal motion
了解复杂多模态运动中活性电弹性材料的 3D 流体动力学
  • 批准号:
    1705739
  • 财政年份:
    2017
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CISM-Kurs "Mechanics and Electrodynamics of Magneto- and Electroelastic Materials" (29.06.-03.07.2009 in Udine/Italien)
CISM课程“磁和电弹性材料的力学和电动力学”(2009年6月29日至7月3日在意大利乌迪内)
  • 批准号:
    149589856
  • 财政年份:
    2009
  • 资助金额:
    $ 40万
  • 项目类别:
    Research Grants
Electroelastic Fracture and Reliability Mechanics of Piezoelectric Materials and Actuators
压电材料和执行器的电弹性断裂和可靠性力学
  • 批准号:
    9415250
  • 财政年份:
    1994
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了