Collaborative Research: Generating Electricity from Deformation: Multiscale Modeling and Characterization of Flexoelectricity from Atoms to Devices

合作研究:变形发电:从原子到设备的柔性电的多尺度建模和表征

基本信息

  • 批准号:
    1463339
  • 负责人:
  • 金额:
    $ 37.78万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-06-01 至 2019-05-31
  • 项目状态:
    已结题

项目摘要

Small sensors -- at the micro or nanoscale -- promise to extend human perception to extreme and previously inaccessible environments. How will these next-generation stand-alone sensor systems be powered? Many existing solutions use piezoelectric materials to convert mechanical vibration into electricity. However, only a small class of materials exhibits practically useful levels of this form of electromechanical coupling, and those typically lose their piezoelectricity at higher temperatures. This precludes their use in precisely the environments where the new classes of sensors are needed most. Furthermore, the highest performing piezoelectric materials contain lead, which creates manufacturing and disposal hazards. This project investigates generation of electricity by an entirely different phenomenon, called flexoelectricity. Unlike piezoelectricity, flexoelectricity is present in all dielectric solids, and thus offers an environmentally compatible alternative to piezoelectrics. This project combines complementary computational and experimental research studies to explore and understand flexoelectricity from atomistic scales to the device level. This work will enable a novel framework for the dramatically enhanced performance of energy harvesting devices. This collaborative research program combines atomistic and continuum electroelastic modeling, nonlinear dynamic phenomena, nanofabrication, multi-scale experiments, and device characterization to facilitate the establishment of a novel class of revolutionary self-powered sensors and sensing systems at small scales. By bridging the atomistic and continuum theories with rigorous experiments, a fully coupled flexoelectric energy harvester framework will be established to explore the scaling laws for conversion efficiency and power density. For high excitation levels, nonlinear elastic, electroelastic, and dissipative effects in flexoelectric energy harvesting will also be characterized. Based on this fundamentally transformative approach to electromechanical energy harvesting, atomistic modeling of flexoelectricity and continuum-based energy harvesting models will be synergistically coupled with experiments to establish next-generation energy harvesters. Both linear and nonlinear broadband architectures will be explored for harvesting deterministic and stochastic vibrational energy. This research will also establish a framework and thorough understanding of the electroelastic dynamics of nanostructures for use in a variety of other problems involving two-way electromechanical coupling (e.g. sensing, actuation, control) at submicron scales.
微型或纳米级的小型传感器有望将人类的感知能力扩展到极端和以前无法进入的环境。这些下一代独立传感器系统将如何供电?许多现有的解决方案使用压电材料将机械振动转化为电能。然而,只有一小类材料表现出实际有用的这种形式的机电耦合水平,而这些材料通常在较高的温度下失去其压电性。这使得它们无法在最需要新型传感器的环境中使用。此外,性能最高的压电材料含有铅,这会造成制造和处置危害。这个项目通过一种完全不同的现象来研究发电,叫做柔性发电。与压电不同,柔性电存在于所有介电固体中,因此提供了一种环境兼容的压电替代方案。该项目结合了互补的计算和实验研究,从原子尺度到设备层面探索和理解柔性电。这项工作将为能量收集装置的性能显著提高提供一个新的框架。这个合作研究项目结合了原子和连续电弹性建模、非线性动态现象、纳米制造、多尺度实验和设备表征,以促进在小尺度上建立一种新型的革命性自供电传感器和传感系统。通过将原子理论和连续介质理论与严谨的实验相结合,建立了一个全耦合柔性电能量采集器框架,以探索转换效率和功率密度的标度规律。对于高激励水平,非线性弹性,电弹性和耗散效应的柔性电能收集也将被表征。基于这种机电能量收集的根本性变革方法,柔性电力的原子建模和基于连续体的能量收集模型将与实验协同结合,以建立下一代能量收集器。线性和非线性的宽带架构将被探索用于收集确定性和随机振动能量。这项研究还将建立一个框架,并全面了解纳米结构的电弹性动力学,用于亚微米尺度上涉及双向机电耦合(例如传感、驱动、控制)的各种其他问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alper Erturk其他文献

Topological interface modes in 3D-printed triply periodic minimal surface phononic crystals
三维打印三重周期最小表面声子晶体中的拓扑界面模式
  • DOI:
    10.1016/j.matdes.2025.113749
  • 发表时间:
    2025-04-01
  • 期刊:
  • 影响因子:
    7.900
  • 作者:
    Prabhakaran Manogharan;Alper Erturk
  • 通讯作者:
    Alper Erturk
Ultrasound-Powered Wireless Underwater Acoustic Identification Tags for Backscatter Communication
用于反向散射通信的超声波供电无线水下声学识别标签
High-fidelity analysis and experiments of a wireless sensor node with a built-in supercapacitor powered by piezoelectric vibration energy harvesting
  • DOI:
    10.1016/j.ymssp.2024.112147
  • 发表时间:
    2025-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Takaharu Yamada;Haruhiko Asanuma;Yushin Hara;Alper Erturk
  • 通讯作者:
    Alper Erturk
The ultrasonographic evaluation of caudal vena cava diameter before and after fluid replacement in neonatal dehydrated calves with diarrhea
腹泻新生脱水犊牛补液前后尾静脉直径的超声评估
  • DOI:
    10.1186/s12917-025-04759-z
  • 发表时间:
    2025-07-02
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Alper Erturk;Mutlu Sevinc
  • 通讯作者:
    Mutlu Sevinc
Experimental and numerical investigation of self-heating effects on the through-metal ultrasonic power transfer efficiency
自热效应对穿金属超声功率传输效率影响的实验与数值研究
  • DOI:
    10.1016/j.ultras.2025.107696
  • 发表时间:
    2025-11-01
  • 期刊:
  • 影响因子:
    4.100
  • 作者:
    Allen Zhou;Prabhakaran Manogharan;Kevin Dix;Ihab El-Kady;Alper Erturk
  • 通讯作者:
    Alper Erturk

Alper Erturk的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alper Erturk', 18)}}的其他基金

Coupling Skull-Brain Vibroacoustics and Ultrasound Toward Enhanced Imaging, Diagnosis, and Therapy
颅脑振动声学和超声的耦合以增强成像、诊断和治疗
  • 批准号:
    1933158
  • 财政年份:
    2019
  • 资助金额:
    $ 37.78万
  • 项目类别:
    Standard Grant
LEAP-HI: Investigation of coupled skull-brain vibroacoustics and ultrasound toward enhanced therapy and diagnosis
LEAP-HI:研究耦合颅脑振动声学和超声以增强治疗和诊断
  • 批准号:
    1830577
  • 财政年份:
    2018
  • 资助金额:
    $ 37.78万
  • 项目类别:
    Standard Grant
Dynamics of Contactless Ultrasonic Power Transfer for Wireless Devices
无线设备非接触式超声波功率传输的动力学
  • 批准号:
    1727951
  • 财政年份:
    2017
  • 资助金额:
    $ 37.78万
  • 项目类别:
    Standard Grant
Metamaterial-Enhanced Electroelastoacoustic Energy Harvesting for Sensor Systems
用于传感器系统的超材料增强电弹声能量收集
  • 批准号:
    1333978
  • 财政年份:
    2013
  • 资助金额:
    $ 37.78万
  • 项目类别:
    Standard Grant
CAREER: Electroelastic Dynamics of Flexible Piezoelectric Composites for Enhanced Biomimetic Locomotion and Energy Harvesting
职业:用于增强仿生运动和能量收集的柔性压电复合材料的电弹性动力学
  • 批准号:
    1254262
  • 财政年份:
    2013
  • 资助金额:
    $ 37.78万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: EPIIC: Generating Regional Innovative Partnerships (GRIP)
合作研究:EPIIC:建立区域创新伙伴关系(GRIP)
  • 批准号:
    2331583
  • 财政年份:
    2023
  • 资助金额:
    $ 37.78万
  • 项目类别:
    Standard Grant
Collaborative Research: EPIIC: Generating Regional Innovative Partnerships (GRIP)
合作研究:EPIIC:建立区域创新伙伴关系(GRIP)
  • 批准号:
    2331585
  • 财政年份:
    2023
  • 资助金额:
    $ 37.78万
  • 项目类别:
    Standard Grant
Collaborative Research: EPIIC: Generating Regional Innovative Partnerships (GRIP)
合作研究:EPIIC:建立区域创新伙伴关系(GRIP)
  • 批准号:
    2331584
  • 财政年份:
    2023
  • 资助金额:
    $ 37.78万
  • 项目类别:
    Standard Grant
Collaborative Research: EPIIC: Generating Regional Innovative Partnerships (GRIP)
合作研究:EPIIC:建立区域创新伙伴关系(GRIP)
  • 批准号:
    2331582
  • 财政年份:
    2023
  • 资助金额:
    $ 37.78万
  • 项目类别:
    Standard Grant
Collaborative Research: EPIIC: Generating Regional Innovative Partnerships (GRIP)
合作研究:EPIIC:建立区域创新伙伴关系(GRIP)
  • 批准号:
    2331586
  • 财政年份:
    2023
  • 资助金额:
    $ 37.78万
  • 项目类别:
    Standard Grant
Collaborative Research: GCR: Generating Actionable Research to Investigate Combined Climate Intervention Strategies for Stakeholder Use
合作研究:GCR:生成可行的研究来调查供利益相关者使用的综合气候干预策略
  • 批准号:
    2218785
  • 财政年份:
    2022
  • 资助金额:
    $ 37.78万
  • 项目类别:
    Continuing Grant
Collaborative Research: CAS - Climate: Improving Nonstationary Intensity-Duration-Frequency Analysis of Extreme Precipitation by Advancing Knowledge on the Generating Mechanisms
合作研究:CAS - 气候:通过增进对生成机制的认识来改进极端降水的非平稳强度-持续时间-频率分析
  • 批准号:
    2221803
  • 财政年份:
    2022
  • 资助金额:
    $ 37.78万
  • 项目类别:
    Standard Grant
Collaborative Research: GCR: Generating Actionable Research to Investigate Combined Climate Intervention Strategies for Stakeholder Use
合作研究:GCR:生成可行的研究来调查供利益相关者使用的综合气候干预策略
  • 批准号:
    2218777
  • 财政年份:
    2022
  • 资助金额:
    $ 37.78万
  • 项目类别:
    Continuing Grant
Collaborative Research: GCR: Generating Actionable Research to Investigate Combined Climate Intervention Strategies for Stakeholder Use
合作研究:GCR:生成可行的研究来调查供利益相关者使用的综合气候干预策略
  • 批准号:
    2218779
  • 财政年份:
    2022
  • 资助金额:
    $ 37.78万
  • 项目类别:
    Continuing Grant
Collaborative Research: GCR: Generating Actionable Research to Investigate Combined Climate Intervention Strategies for Stakeholder Use
合作研究:GCR:生成可行的研究来调查供利益相关者使用的综合气候干预策略
  • 批准号:
    2218758
  • 财政年份:
    2022
  • 资助金额:
    $ 37.78万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了