Dynamics of Contactless Ultrasonic Power Transfer for Wireless Devices

无线设备非接触式超声波功率传输的动力学

基本信息

  • 批准号:
    1727951
  • 负责人:
  • 金额:
    $ 34.81万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-08-01 至 2021-07-31
  • 项目状态:
    已结题

项目摘要

The transformation of ambient mechanical energy such as vibrational energy into low-power electricity for enabling self-powered wireless electronic components has been heavily investigated over the last decade. This method of energy transfer is possible as long as sufficient ambient energy is readily available in the vicinity of small devices. There are several conditions where there is no ambient energy available or battery replacement or tethered charging is either undesirable or impossible, for example, deep-implanted medical devices or sensors located in hazardous environments such as nuclear waste containers. In such cases, contactless power transfer is needed. The primary objective of this theoretical and experimental research is to perform a system-level investigation of contactless ultrasonic power transfer dynamics to lay the foundation for its implementation in next-generation wireless devices. One particular method of contactless power transfer that has lately received growing attention is the use of ultrasound waves (which are acoustic waves with frequencies higher than the human hearing range). The use of ultrasound offers several advantages such as relatively long power transmission distances using smaller transducers, and elimination of magnetic fields, as compared to popular power transfer methods such as inductive coupling. The research has significant potential for technological and broad societal impact. Contactless powering of wireless electronic components can reduce the maintenance costs in sensor networks and chemical waste of discarded batteries. Wireless charging of deep-implanted medical devices can eliminate the surgery-related complications associated with battery replacement. The project involves efforts to recruit women and minority undergraduate students and involvement of high school teachers in research experience. The effective use of ultrasonic power transfer as an enabling technology in wireless applications faces difficult challenges due to the presence of obstacles, reflections, diffractions, losses, and acoustic or electromechanical impedance matching issues resulting from the multiple domains involved. The objective of this research program is to perform a system-level theoretical and experimental investigation of contactless ultrasonic power transfer by coupling the dynamics of electromechanical systems, piezoelectricity, ultrasonic wave physics, and acoustic metamaterials. The project will generate a comprehensive knowledge of the underlying multiphysics dynamics to be exploited in next-generation wireless electronic devices spanning from medical implants to remote sensors with no direct physical access. System-level, experimentally validated, high-fidelity multiphysics modeling frameworks that combine transmitter-receiver-electrical load dynamics with acoustic propagation across multiple domains can enable the design of efficient ultrasonic power transfer systems. Additionally, concepts from phononic crystals and metamaterials can be exploited for combined wave focusing and impedance matching, and phased arrays can be leveraged for obstacle circumventing in power transfer. The specific research goals are to (1) establish fully coupled modeling frameworks to analyze multiphysics dynamics of contactless ultrasonic power transfer; (2) leverage various piezoelectric transmitter-receiver architectures including phased arrays; and (3) exploit phononic crystals and metamaterials for combined wave focusing and impedance matching.
在过去的十年中,已经大量研究了将诸如振动能的环境机械能转换成低功率电力以实现自供电无线电子部件。只要在小型设备附近容易获得足够的环境能量,这种能量转移方法就是可能的。有几种情况下,没有可用的环境能量或电池更换或系绳充电是不可取的或不可能的,例如,位于危险环境中的深植入医疗设备或传感器,如核废料容器。在这种情况下,需要非接触式电力传输。这项理论和实验研究的主要目标是对非接触式超声功率传输动力学进行系统级研究,为其在下一代无线设备中的实现奠定基础。最近受到越来越多关注的非接触式电力传输的一种特定方法是使用超声波(其是频率高于人类听觉范围的声波)。与诸如电感耦合的流行功率传输方法相比,超声波的使用提供了若干优点,诸如使用较小的换能器的相对长的功率传输距离,以及消除磁场。这项研究具有重大的技术潜力和广泛的社会影响。无线电子元件的非接触式供电可以减少传感器网络的维护成本和废弃电池的化学废物。深度植入医疗设备的无线充电可以消除与电池更换相关的手术相关并发症。该项目包括努力招收女大学生和少数民族大学生,并让高中教师参与研究工作。 由于存在障碍物、反射、衍射、损耗以及由所涉及的多个域引起的声学或机电阻抗匹配问题,超声波功率传输作为无线应用中的使能技术的有效使用面临困难的挑战。本研究计划的目标是通过耦合机电系统,压电,超声波物理和声学超材料的动力学,对非接触式超声功率传输进行系统级的理论和实验研究。 该项目将产生一个全面的知识,基本的多物理场动力学将被利用在下一代无线电子设备,从医疗植入物到远程传感器,没有直接的物理访问。将联合收割机发射器-接收器-电负载动态与跨多个域的声传播相结合的系统级、实验验证的高保真度多物理场建模框架可以实现高效超声功率传输系统的设计。此外,来自声子晶体和超材料的概念可以用于组合波聚焦和阻抗匹配,并且相控阵列可以用于电力传输中的障碍规避。具体的研究目标是(1)建立完全耦合的建模框架,以分析非接触式超声功率传输的多物理场动力学;(2)利用各种压电发射器-接收器架构,包括相控阵列;(3)利用声子晶体和超材料进行组合波聚焦和阻抗匹配。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Enhanced Sound Energy Harvesting by Leveraging Gradient-Index Phononic Crystals
利用梯度折射率声子晶体增强声能收集
Sound energy harvesting by leveraging a 3D-printed phononic crystal lens
  • DOI:
    10.1063/5.0030698
  • 发表时间:
    2021-03
  • 期刊:
  • 影响因子:
    4
  • 作者:
    A. Allam;K. Sabra;A. Erturk
  • 通讯作者:
    A. Allam;K. Sabra;A. Erturk
3D-Printed Gradient-Index Phononic Crystal Lens for Underwater Acoustic Wave Focusing
  • DOI:
    10.1103/physrevapplied.13.064064
  • 发表时间:
    2020-06-26
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Allam, Ahmed;Sabra, Karim;Erturk, Alper
  • 通讯作者:
    Erturk, Alper
Aspect Ratio-Dependent Dynamics of Piezoelectric Transducers in Wireless Acoustic Power Transfer
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alper Erturk其他文献

Topological interface modes in 3D-printed triply periodic minimal surface phononic crystals
三维打印三重周期最小表面声子晶体中的拓扑界面模式
  • DOI:
    10.1016/j.matdes.2025.113749
  • 发表时间:
    2025-04-01
  • 期刊:
  • 影响因子:
    7.900
  • 作者:
    Prabhakaran Manogharan;Alper Erturk
  • 通讯作者:
    Alper Erturk
Ultrasound-Powered Wireless Underwater Acoustic Identification Tags for Backscatter Communication
用于反向散射通信的超声波供电无线水下声学识别标签
High-fidelity analysis and experiments of a wireless sensor node with a built-in supercapacitor powered by piezoelectric vibration energy harvesting
  • DOI:
    10.1016/j.ymssp.2024.112147
  • 发表时间:
    2025-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Takaharu Yamada;Haruhiko Asanuma;Yushin Hara;Alper Erturk
  • 通讯作者:
    Alper Erturk
The ultrasonographic evaluation of caudal vena cava diameter before and after fluid replacement in neonatal dehydrated calves with diarrhea
腹泻新生脱水犊牛补液前后尾静脉直径的超声评估
  • DOI:
    10.1186/s12917-025-04759-z
  • 发表时间:
    2025-07-02
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Alper Erturk;Mutlu Sevinc
  • 通讯作者:
    Mutlu Sevinc
Experimental and numerical investigation of self-heating effects on the through-metal ultrasonic power transfer efficiency
自热效应对穿金属超声功率传输效率影响的实验与数值研究
  • DOI:
    10.1016/j.ultras.2025.107696
  • 发表时间:
    2025-11-01
  • 期刊:
  • 影响因子:
    4.100
  • 作者:
    Allen Zhou;Prabhakaran Manogharan;Kevin Dix;Ihab El-Kady;Alper Erturk
  • 通讯作者:
    Alper Erturk

Alper Erturk的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alper Erturk', 18)}}的其他基金

Coupling Skull-Brain Vibroacoustics and Ultrasound Toward Enhanced Imaging, Diagnosis, and Therapy
颅脑振动声学和超声的耦合以增强成像、诊断和治疗
  • 批准号:
    1933158
  • 财政年份:
    2019
  • 资助金额:
    $ 34.81万
  • 项目类别:
    Standard Grant
LEAP-HI: Investigation of coupled skull-brain vibroacoustics and ultrasound toward enhanced therapy and diagnosis
LEAP-HI:研究耦合颅脑振动声学和超声以增强治疗和诊断
  • 批准号:
    1830577
  • 财政年份:
    2018
  • 资助金额:
    $ 34.81万
  • 项目类别:
    Standard Grant
Collaborative Research: Generating Electricity from Deformation: Multiscale Modeling and Characterization of Flexoelectricity from Atoms to Devices
合作研究:变形发电:从原子到设备的柔性电的多尺度建模和表征
  • 批准号:
    1463339
  • 财政年份:
    2015
  • 资助金额:
    $ 34.81万
  • 项目类别:
    Standard Grant
Metamaterial-Enhanced Electroelastoacoustic Energy Harvesting for Sensor Systems
用于传感器系统的超材料增强电弹声能量收集
  • 批准号:
    1333978
  • 财政年份:
    2013
  • 资助金额:
    $ 34.81万
  • 项目类别:
    Standard Grant
CAREER: Electroelastic Dynamics of Flexible Piezoelectric Composites for Enhanced Biomimetic Locomotion and Energy Harvesting
职业:用于增强仿生运动和能量收集的柔性压电复合材料的电弹性动力学
  • 批准号:
    1254262
  • 财政年份:
    2013
  • 资助金额:
    $ 34.81万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Acoustic Vortex Robots for Contactless 6-Degrees-of-Freedom Object Manipulation
职业:用于非接触式 6 自由度物体操纵的声学涡旋机器人
  • 批准号:
    2340016
  • 财政年份:
    2024
  • 资助金额:
    $ 34.81万
  • 项目类别:
    Standard Grant
AcoustoFab: Contactless fabrication using acoustophoresis
AcoustoFab:使用声泳的非接触式制造
  • 批准号:
    EP/Y027825/1
  • 财政年份:
    2024
  • 资助金额:
    $ 34.81万
  • 项目类别:
    Research Grant
Proof-of-Concept of a contactless acoustic microreactor for Lab-in-a-drop
用于液滴实验室的非接触式声学微反应器的概念验证
  • 批准号:
    23K17732
  • 财政年份:
    2023
  • 资助金额:
    $ 34.81万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
A study of contactless vein authentication system using 3D images
基于3D图像的非接触式静脉认证系统的研究
  • 批准号:
    23H01644
  • 财政年份:
    2023
  • 资助金额:
    $ 34.81万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
SBIR Phase II: Gaze-independent contactless autorefractor for self-serve eye exam kiosk.
SBIR 第二阶段:用于自助眼科检查亭的不依赖凝视的非接触式自动验光仪。
  • 批准号:
    2322305
  • 财政年份:
    2023
  • 资助金额:
    $ 34.81万
  • 项目类别:
    Cooperative Agreement
MIR-laser assisted near-field etching ~ contactless super-planarization of compound semiconductors
中红外激光辅助近场蚀刻 ~ 化合物半导体的非接触超平坦化
  • 批准号:
    23K03616
  • 财政年份:
    2023
  • 资助金额:
    $ 34.81万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A study on high-precision real-time tracking of mobile devices and its application to contactless identification by using machine learning
移动设备高精度实时跟踪及其在机器学习非接触式识别中的应用研究
  • 批准号:
    23K03889
  • 财政年份:
    2023
  • 资助金额:
    $ 34.81万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Dielectrophoretic roll system for high performance electronics using contactless selective assembly of nanostructures on large areas
用于高性能电子产品的介电泳辊系统,采用大面积非接触式选择性组装纳米结构
  • 批准号:
    EP/W025752/1
  • 财政年份:
    2023
  • 资助金额:
    $ 34.81万
  • 项目类别:
    Research Grant
SCH: Contactless and Engagement-free Sleep Apnea Monitoring and Characterization
SCH:非接触式、免接触式睡眠呼吸暂停监测和表征
  • 批准号:
    10816627
  • 财政年份:
    2023
  • 资助金额:
    $ 34.81万
  • 项目类别:
Lifelight(R) Junior: a contactless early infection detection tool for clinically vulnerable children
Lifelight(R) Junior:针对临床弱势儿童的非接触式早期感染检测工具
  • 批准号:
    10028010
  • 财政年份:
    2022
  • 资助金额:
    $ 34.81万
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了