CAREER: Large-Scale Structures in Turbulent Dynamo Experiments with Liquid-Metal Suspensions
职业:液态金属悬浮液湍流发电机实验中的大型结构
基本信息
- 批准号:1255541
- 负责人:
- 金额:$ 40.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-03-15 至 2014-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Brown1255541The turbulent dynamo process is the generation of a magnetic field from the turbulent flow of a conducting fluid; which occurs for example in the Earth's core. An understanding of how turbulent flow structures generate the magnetic field is a central challenge in dynamo research. However, only one experiment has been able to produce a turbulent dynamo because of the extreme material properties and scale required; even in that case the fluid flows that generate the magnetic field have not yet been measured, and the fluid flows cannot be directly simulated in the strongly turbulent regime. The goals of this research plan are to use materials design to develop a revolutionary approach to magnetohydrodynamic experiments, and combine experiments and low-dimensional modeling to understand how fluid flow structures interact to generate magnetic fields in dynamos. The extreme parameter regime required for generating a turbulent dynamo in the laboratory will be reached by designing materials consisting of magnetic particles suspended in a liquid metal, i.e. micron-sized iron particles suspended in liquid gallium and its alloys. Such a fluid will have a high enough conductivity and magnetic susceptibility to build the universe's smallest turbulent dynamo (10 cm). The first simultaneous measurements of fluid flow and magnetic field in a turbulent dynamo will be made to connect their dynamics with an array of temperature and magnetic field probes at several locations around the apparatus. Turbulent flow structures can be reconstructed from such measurements, and modeled with low-dimensional models consisting of stochastic ordinary differential equations. These experimental and modeling techniques will be combined to understand how turbulent flow structures interact to produce magnetic fields. Intellectual merit: This materials design is a novel approach to dynamos that would transform the field by opening up experimental research to more laboratories -- experiments could be scaled down and the need for large facilities to handle liquid sodium in traditional dynamo experiments would be eliminated. The tunable material properties of suspensions will allow for a direct comparison with simulations in the same parameter regime which has not been possible with traditional dynamo experiments. The first simultaneous measurements of turbulent flow structures and magnetic fields in an experimental dynamo will allow development and testing of models for how turbulent flow structures generate a magnetic field. The low-dimensional modeling techniques have the potential to become a new paradigm for simple understanding and quantitative predictions of different dynamical behaviors of large-scale structures in a wide variety of turbulent flows.Broader impacts: Materials design will result in the development and characterization of fluids with useful tunable properties including high conductivity and a strong magnetic response; possible applications include magnetorheological brakes with reduced heat dissipation, and fluid power transformers with no moving solid parts. Astronomical dynamos such as the Earth and Sun have complicated dynamics that are not well-understood. Solar flares can interfere with long-wave radio communications and produce radiation hazards to spacecraft. Earth's magnetic field protects against dangerous radiation from the Sun. Modeling of magnetic dynamos may lead to better understanding of their dynamical behavior, which could have a positive impact on aerospace engineering. An integrated scientific research education program for undergraduates will be developed at UC Merced, a minority-serving research institution. This includes coordination of the lower division and upper division laboratory courses, and senior theses, with a focus on the scientific method and data analysis. These educational components will be evaluated according to a rubric for laboratory reports, theses, and presentations in line the physics program's learning objectives.
布朗1255541湍流发电机过程(英语:Turbulent dynamo process)是由导电流体的湍流产生磁场的过程,例如发生在地球的核心。 了解湍流结构如何产生磁场是发电机研究的一个核心挑战。然而,只有一个实验已经能够产生一个湍流发电机,因为极端的材料性能和规模的要求;即使在这种情况下,产生磁场的流体流动尚未被测量,流体流动不能直接模拟强湍流状态。本研究计划的目标是利用材料设计开发一种革命性的方法来进行磁流体动力学实验,并将联合收割机实验和低维建模相结合,以了解流体流动结构如何相互作用,从而在发电机中产生磁场。在实验室中产生湍流发电机所需的极端参数范围将通过设计由悬浮在液体金属中的磁性颗粒组成的材料来实现,即悬浮在液体镓及其合金中的微米级铁颗粒。这样的流体将具有足够高的电导率和磁化率,以建立宇宙中最小的湍流发电机(10厘米)。第一个同时测量流体流动和磁场在湍流发电机将连接其动态与温度和磁场探头阵列在几个位置周围的设备。湍流结构可以从这样的测量重建,并与随机常微分方程组成的低维模型建模。这些实验和建模技术将结合起来,以了解湍流结构如何相互作用,产生磁场。智力优点:这种材料设计是一种新的发电机方法,它将通过向更多的实验室开放实验研究来改变该领域-实验可以按比例缩小,并且在传统发电机实验中需要大型设施来处理液体钠。悬浮液的可调材料特性将允许直接比较与模拟在相同的参数制度,这是不可能与传统的发电机实验。在实验发电机中首次同时测量湍流结构和磁场,将允许开发和测试湍流结构如何产生磁场的模型。低维模拟技术有可能成为一种新的范例,用于简单理解和定量预测各种湍流中大尺度结构的不同动力学行为。更广泛的影响:材料设计将导致开发和表征具有有用的可调特性的流体,包括高电导率和强磁响应;可能的应用包括具有减少的热耗散的磁流变制动器和没有移动固体部件的流体动力变压器。像地球和太阳这样的天文发电机有着复杂的动力学,人们还没有很好地理解。太阳耀斑会干扰长波无线电通信,对航天器造成辐射危害。地球的磁场可以防止来自太阳的危险辐射。 磁发电机的建模可能会导致更好地了解其动力学行为,这可能会对航空航天工程产生积极的影响。将在为少数民族服务的研究机构加州大学默塞德为本科生制定一个综合科研教育方案。这包括协调低年级和高年级实验室课程和高级论文,重点是科学方法和数据分析。 这些教育成分将根据实验室报告,论文和演示文稿的标题进行评估,符合物理课程的学习目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eric Brown其他文献
The Stanford Encyclopedia of Philosophy
斯坦福哲学百科全书
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
P. Kleingeld;Eric Brown - 通讯作者:
Eric Brown
The Internet of Things: Architecture, Security Threats, and Risk Mitigation Techniques
物联网:架构、安全威胁和风险缓解技术
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Eric Brown;M. Ketel - 通讯作者:
M. Ketel
ONR MURI project on soil blast modeling and simulation
ONR MURI 土壤爆炸建模与模拟项目
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
R. Regueiro;R. Pak;J. McCartney;S. Sture;B. Yan;Zheng Duan;J. Svoboda;W. Mun;O. Vasilyev;N. Kasimov;Eric Brown;C. Hansen;Shaofan Li;B. Ren;K. Alshibli;A. Druckrey;Hongbing Lu;Huiyang Luo;R. Brannon;Carlos Bonifasi;A. Yarahmadi;E. Ghodrati;J. Colovos - 通讯作者:
J. Colovos
Su1772 – Inflammation-Dependent Transcriptional Re-Programming of the Hif Pathway in the Mucosa of Ulcerative Colitis Patients
- DOI:
10.1016/s0016-5085(19)38409-4 - 发表时间:
2019-05-01 - 期刊:
- 影响因子:
- 作者:
Eric Brown;Catherine Rowan;Moritz Strowitzki;Raphael Fagundes Rosa;Annemarie Guentsch;Doug N. Halligan;Glen Doherty;Cormac Taylor - 通讯作者:
Cormac Taylor
Instability of the noncommutative geometry inspired black hole
- DOI:
10.1016/j.physletb.2010.10.014 - 发表时间:
2011-01-03 - 期刊:
- 影响因子:
- 作者:
Eric Brown;Robert Mann - 通讯作者:
Robert Mann
Eric Brown的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eric Brown', 18)}}的其他基金
Shear Thickening: Insights from Far-From-Equilibrium Phenomena
剪切增厚:来自远离平衡现象的见解
- 批准号:
1410157 - 财政年份:2014
- 资助金额:
$ 40.21万 - 项目类别:
Standard Grant
CAREER: Large-Scale Structures in Turbulent Dynamo Experiments with Liquid-Metal Suspensions
职业:液态金属悬浮液湍流发电机实验中的大型结构
- 批准号:
1431135 - 财政年份:2013
- 资助金额:
$ 40.21万 - 项目类别:
Continuing Grant
相似国自然基金
水稻穗粒数调控关键因子LARGE6的分子遗传网络解析
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
量子自旋液体中拓扑拟粒子的性质:量子蒙特卡罗和新的large-N理论
- 批准号:
- 批准年份:2020
- 资助金额:62 万元
- 项目类别:面上项目
甘蓝型油菜Large Grain基因调控粒重的分子机制研究
- 批准号:31972875
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
Large PB/PB小鼠 视网膜新生血管模型的研究
- 批准号:30971650
- 批准年份:2009
- 资助金额:8.0 万元
- 项目类别:面上项目
基因discs large在果蝇卵母细胞的后端定位及其体轴极性形成中的作用机制
- 批准号:30800648
- 批准年份:2008
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
LARGE基因对口腔癌细胞中α-DG糖基化及表达的分子调控
- 批准号:30772435
- 批准年份:2007
- 资助金额:29.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Large scale geometry and negative curvature
职业:大规模几何和负曲率
- 批准号:
2340341 - 财政年份:2024
- 资助金额:
$ 40.21万 - 项目类别:
Continuing Grant
CAREER: A Multi-faceted Framework to Enable Computationally Efficient Evaluation and Automatic Design for Large-scale Economics-driven Transmission Planning
职业生涯:一个多方面的框架,可实现大规模经济驱动的输电规划的计算高效评估和自动设计
- 批准号:
2339956 - 财政年份:2024
- 资助金额:
$ 40.21万 - 项目类别:
Continuing Grant
CAREER: Strategic Interactions, Learning, and Dynamics in Large-Scale Multi-Agent Systems: Achieving Tractability via Graph Limits
职业:大规模多智能体系统中的战略交互、学习和动态:通过图限制实现可处理性
- 批准号:
2340289 - 财政年份:2024
- 资助金额:
$ 40.21万 - 项目类别:
Continuing Grant
CAREER: Novel Parallelization Frameworks for Large-Scale Network Optimization with Combinatorial Requirements: Solution Methods and Applications
职业:具有组合要求的大规模网络优化的新型并行化框架:解决方法和应用
- 批准号:
2338641 - 财政年份:2024
- 资助金额:
$ 40.21万 - 项目类别:
Standard Grant
CAREER: Learning Theory for Large-scale Stochastic Games
职业:大规模随机博弈的学习理论
- 批准号:
2339240 - 财政年份:2024
- 资助金额:
$ 40.21万 - 项目类别:
Continuing Grant
CAREER: Theoretical foundations for deep learning and large-scale AI models
职业:深度学习和大规模人工智能模型的理论基础
- 批准号:
2339904 - 财政年份:2024
- 资助金额:
$ 40.21万 - 项目类别:
Continuing Grant
CAREER: Structure Exploiting Multi-Agent Reinforcement Learning for Large Scale Networked Systems: Locality and Beyond
职业:为大规模网络系统利用多智能体强化学习的结构:局部性及其他
- 批准号:
2339112 - 财政年份:2024
- 资助金额:
$ 40.21万 - 项目类别:
Continuing Grant
CAREER: Evolutionary Games in Dynamic and Networked Environments for Modeling and Controlling Large-Scale Multi-agent Systems
职业:动态和网络环境中的进化博弈,用于建模和控制大规模多智能体系统
- 批准号:
2239410 - 财政年份:2023
- 资助金额:
$ 40.21万 - 项目类别:
Continuing Grant
CAREER: Learning for Generalization in Large-Scale Cyber-Physical Systems
职业:大规模网络物理系统中的泛化学习
- 批准号:
2239566 - 财政年份:2023
- 资助金额:
$ 40.21万 - 项目类别:
Continuing Grant
CAREER: Large-Scale Exploration and Interpretation of Consumer-Oriented Legal Documents
职业:面向消费者的法律文件的大规模探索和解读
- 批准号:
2237574 - 财政年份:2023
- 资助金额:
$ 40.21万 - 项目类别:
Continuing Grant