CAREER: Multiple Dirichlet Series, Automorphic Forms, and Combinatorial Representation Theory

职业:多重狄利克雷级数、自同构形式和组合表示理论

基本信息

  • 批准号:
    1258675
  • 负责人:
  • 金额:
    $ 19.96万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-06-01 至 2015-06-30
  • 项目状态:
    已结题

项目摘要

In this proposal, Principal Investigator Brubaker intends to study automorphic forms on finite covers of split, reductive algebraic groups known as metaplectic forms. More precisely, he will investigate the Fourier-Whittaker coefficients of metaplectic Eisenstein series induced from parabolic subgroups. When the degree of the cover is trivial, this reduces to the case of Eisenstein series on linear algebraic groups as studied by Langlands, Shahidi, and others, which have been instrumental in formulating and proving portions of the Langlands program. By studying metaplectic forms in families ranging over all finite covers (including the trivial one), surprising new structure emerges. Brubaker and his collaborators have demonstrated that the resulting Fourier-Whittaker coefficients contain Dirichlet series in several complex variables (so-called ``multiple Dirichlet series'') whose coefficients are described in terms of crystal graphs. These crystal graphs encode information about representations of quantum groups, which are deformations of the universal enveloping algebra of a Lie algebra. In this situation, the relevant Lie algebra is associated to the Langlands dual group of the group on which one builds the Eisenstein series. The proposal seeks to develop this theory more completely and explore the novel connections it suggests between number theory, quantum groups and combinatorial representation theory. Langlands' program was initially conceived as a stunning collection of conjectures relating functions with interesting arithmetic properties (e.g., counting the number of integer solutions to an equation) to functions with good analytic properties (e.g., having symmetries and being the solution of a natural differential equation). But similar kinds of duality have been observed in geometry and mathematical physics, leading to geometric and quantum versions of the Langlands programs, respectively. In short, these dualities have become a lens through which a large portion of modern mathematics and mathematical physics can be organized and understood. However, the explicit underlying mechanisms which relate, for example, arithmetic functions to analytic functions remain largely a mystery. In these projects, Principal Investigator Brubaker with his collaborators and students will use the data provided by the above special examples to attempt to find such a mechanism and attempt to better understand the relationships between various incarnations of the Langlands program in arithmetic, geometry, and physics. An equally important component of the projects is the training of students at all levels by creating a tiered system of mentoring. To bolster these efforts, a set of course materials will be developed to reflect the changing emphasis in modern number theory on analytic techniques, focusing on computational approaches and example-based learning to reinforce concepts
在这个提议中,首席研究员Brubaker打算研究分裂代数群有限覆盖上的自同构形式,称为元形形式。更准确地说,他将研究由抛物子群导出的metpliceisenstein级数的Fourier-Whittaker系数。当覆盖的程度是微不足道的,这就减少到线性代数群上的爱森斯坦级数的情况,正如Langlands, Shahidi和其他人所研究的那样,这在制定和证明Langlands纲领的部分方面是有帮助的。通过研究涵盖所有有限覆盖(包括平凡覆盖)的科的形而上学形式,出现了令人惊讶的新结构。Brubaker和他的合作者已经证明,得到的傅立叶-惠特克系数包含几个复杂变量的狄利克雷级数(所谓的“多重狄利克雷级数”),其系数用晶体图来描述。这些晶体图编码了关于量子群表示的信息,量子群是李代数的普遍包络代数的变形。在这种情况下,相关的李代数与构成爱森斯坦级数的群的朗兰兹对偶群有关。该提案旨在更完整地发展这一理论,并探索它提出的数论、量子群和组合表示理论之间的新联系。朗兰兹的程序最初被认为是一个惊人的猜想集合,将具有有趣算术性质的函数(例如,计算方程的整数解的数量)与具有良好解析性质的函数(例如,具有对称性和作为自然微分方程的解)联系起来。但在几何和数学物理中也观察到类似的对偶现象,这分别导致了朗兰兹程序的几何和量子版本。简而言之,这些对偶性已经成为一个透镜,通过它可以组织和理解大部分现代数学和数学物理。然而,与算术函数和分析函数相关的显式潜在机制在很大程度上仍然是一个谜。在这些项目中,首席研究员Brubaker和他的合作者和学生将利用上述特殊例子提供的数据,试图找到这样一种机制,并试图更好地理解朗兰兹纲领在算术、几何和物理方面的各种表现形式之间的关系。该项目的一个同样重要的组成部分是通过创建一个分层的指导系统来培训各个层次的学生。为了支持这些努力,将开发一套课程材料,以反映现代数论对分析技术的不断变化的重视,重点是计算方法和基于示例的学习,以加强概念

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Benjamin Brubaker其他文献

Benjamin Brubaker的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Benjamin Brubaker', 18)}}的其他基金

Representations of p-adic Covering Groups and Integrable Systems
p-adic 覆盖群和可积系统的表示
  • 批准号:
    2101392
  • 财政年份:
    2021
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Standard Grant
Matrix Coefficients of Covering Groups, Quantum Groups, and Lie Superalgebras
覆盖群、量子群和李超代数的矩阵系数
  • 批准号:
    1801527
  • 财政年份:
    2018
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Continuing Grant
Metaplectic automorphic forms and matrix coefficients
Metaplectic 自守形式和矩阵系数
  • 批准号:
    1406238
  • 财政年份:
    2014
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Continuing Grant
Automorphic Forms, Representations, and Combinatorics
自守形式、表示和组合
  • 批准号:
    1205558
  • 财政年份:
    2012
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Standard Grant
CAREER: Multiple Dirichlet Series, Automorphic Forms, and Combinatorial Representation Theory
职业:多重狄利克雷级数、自同构形式和组合表示理论
  • 批准号:
    0844185
  • 财政年份:
    2009
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Continuing Grant
Applications of the relative trace formula in higher rank
相对迹公式在高阶中的应用
  • 批准号:
    0758197
  • 财政年份:
    2008
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Combinatorial representation theory, multiple Dirichlet series, and moments of L-functions
FRG:协作研究:组合表示理论、多重狄利克雷级数和 L 函数矩
  • 批准号:
    0652529
  • 财政年份:
    2007
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Standard Grant
Multiple Dirichlet Series with Applications to Automorphic Representation Theory
多重狄利克雷级数及其在自守表示理论中的应用
  • 批准号:
    0702438
  • 财政年份:
    2007
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Standard Grant

相似国自然基金

基于Multiple Collocation的北半球多源雪深数据长时序融合研究
  • 批准号:
    42001289
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Multiple Dirichlet Series and Number Theory
多重狄利克雷级数和数论
  • 批准号:
    1601289
  • 财政年份:
    2016
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Continuing Grant
Multiple Dirichlet series, Whittaker functions, and the cohomology of arithmetic groups
多重狄利克雷级数、惠特克函数和算术群的上同调
  • 批准号:
    1501832
  • 财政年份:
    2015
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Continuing Grant
Expression of the Weyl group multiple Dirichlet series with a solvable lattice models
具有可解晶格模型的Weyl群多重狄利克雷级数的表达
  • 批准号:
    24740024
  • 财政年份:
    2012
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Problems in arithmetic groups and multiple Dirichlet series.
算术群和多重狄利克雷级数问题。
  • 批准号:
    1101640
  • 财政年份:
    2011
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Standard Grant
Research on arithmetic properties of multiple Dirichlet series
多重Dirichlet级数算术性质研究
  • 批准号:
    23540022
  • 财政年份:
    2011
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Multiple Dirichlet series and metaplectic groups
职业:多重狄利克雷级数和超群
  • 批准号:
    0847586
  • 财政年份:
    2009
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Standard Grant
CAREER: Multiple Dirichlet Series, Automorphic Forms, and Combinatorial Representation Theory
职业:多重狄利克雷级数、自同构形式和组合表示理论
  • 批准号:
    0844185
  • 财政年份:
    2009
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Continuing Grant
Research on analytic properties of multiple Dirichlet series and its application to number theory
多重Dirichlet级数解析性质及其在数论中的应用研究
  • 批准号:
    20540020
  • 财政年份:
    2008
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
FRG: Collaborative Research: Combinatorial representation theory, multiple Dirichlet series and moments of L-functions
FRG:协作研究:组合表示理论、多重狄利克雷级数和 L 函数矩
  • 批准号:
    0652609
  • 财政年份:
    2007
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Combinatorial representation theory, multiple Dirichlet series and moments of L-functions.
FRG:协作研究:组合表示理论、多重狄利克雷级数和 L 函数矩。
  • 批准号:
    0652312
  • 财政年份:
    2007
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了