Matrix Coefficients of Covering Groups, Quantum Groups, and Lie Superalgebras
覆盖群、量子群和李超代数的矩阵系数
基本信息
- 批准号:1801527
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-01 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The study of symmetry is of fundamental scientific importance. In particular, many physical theories of the universe and of elementary particles are described by collections of symmetries called Lie groups. Understanding the spaces on which these symmetries may act provides important insights into such physical theories. This project will study surprising connections between number theory, quantum groups, and mathematical physics that provide a new way of understanding such spaces.More specifically, the investigator and his students and collaborators will explore matrix coefficients of representations of p-adic groups and their arithmetic covers, known as metaplectic groups. Matrix coefficients allow one to extract numerical invariants from representations. They play a key role in both the construction of automorphic L-functions and the proofs of their analytic properties, and also in the determination of scattering amplitudes in string theory. The project will develop new relations between matrix coefficients, quantum groups, and statistical mechanics, and new methods to study matrix coefficients using Hecke algebras.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
对称性的研究具有基本的科学重要性。特别是,许多关于宇宙和基本粒子的物理理论都是由称为李群的对称性集合描述的。了解这些对称性可能作用的空间,可以提供对这些物理理论的重要见解。该项目将研究数论、量子群和数学物理之间令人惊讶的联系,为理解此类空间提供一种新的方法。更具体地说,研究者及其学生和合作者将探索p-adic群及其算术覆盖的表示的矩阵系数,称为元群。矩阵系数允许人们从表示中提取数值不变量。它们在自守L-函数的构造及其解析性质的证明中起着关键作用,也在弦理论中散射振幅的确定中起着关键作用。该项目将开发矩阵系数、量子群和统计力学之间的新关系,以及使用Hecke代数研究矩阵系数的新方法。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Colored five-vertex models and Demazure atoms
- DOI:10.1016/j.jcta.2020.105354
- 发表时间:2019-02
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
A Yang–Baxter equation for metaplectic ice
- DOI:10.4310/cntp.2019.v13.n1.a4
- 发表时间:2016-04
- 期刊:
- 影响因子:1.9
- 作者:Ben Brubaker;Valentin Buciumas;D. Bump
- 通讯作者:Ben Brubaker;Valentin Buciumas;D. Bump
Vertex Operators, Solvable Lattice Models and Metaplectic Whittaker Functions
- DOI:10.1007/s00220-020-03842-w
- 发表时间:2018-06
- 期刊:
- 影响因子:2.4
- 作者:Ben Brubaker;Valentin Buciumas;D. Bump;H. Gustafsson
- 通讯作者:Ben Brubaker;Valentin Buciumas;D. Bump;H. Gustafsson
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Benjamin Brubaker其他文献
Benjamin Brubaker的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Benjamin Brubaker', 18)}}的其他基金
Representations of p-adic Covering Groups and Integrable Systems
p-adic 覆盖群和可积系统的表示
- 批准号:
2101392 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Metaplectic automorphic forms and matrix coefficients
Metaplectic 自守形式和矩阵系数
- 批准号:
1406238 - 财政年份:2014
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Automorphic Forms, Representations, and Combinatorics
自守形式、表示和组合
- 批准号:
1205558 - 财政年份:2012
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
CAREER: Multiple Dirichlet Series, Automorphic Forms, and Combinatorial Representation Theory
职业:多重狄利克雷级数、自同构形式和组合表示理论
- 批准号:
1258675 - 财政年份:2012
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
CAREER: Multiple Dirichlet Series, Automorphic Forms, and Combinatorial Representation Theory
职业:多重狄利克雷级数、自同构形式和组合表示理论
- 批准号:
0844185 - 财政年份:2009
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Applications of the relative trace formula in higher rank
相对迹公式在高阶中的应用
- 批准号:
0758197 - 财政年份:2008
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Combinatorial representation theory, multiple Dirichlet series, and moments of L-functions
FRG:协作研究:组合表示理论、多重狄利克雷级数和 L 函数矩
- 批准号:
0652529 - 财政年份:2007
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Multiple Dirichlet Series with Applications to Automorphic Representation Theory
多重狄利克雷级数及其在自守表示理论中的应用
- 批准号:
0702438 - 财政年份:2007
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
相似海外基金
Effect of Condensed-Phase Photochemistry on Absorption Coefficients and Phase State of Atmospheric Organic Aerosol Particles
凝聚相光化学对大气有机气溶胶颗粒吸收系数和相态的影响
- 批准号:
2334731 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Spectral analysis of micro-resonant PDEs with random coefficients
具有随机系数的微共振偏微分方程的谱分析
- 批准号:
EP/X01021X/1 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Fellowship
Super Quantum Curves and Super Voros Coefficients
超级量子曲线和超级 Voros 系数
- 批准号:
22KJ0715 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Current-Collector-Optional Measurements to Quantify Precious Metal and Polarization Impacts on Oxygen Surface Exchange Coefficients
电流收集器可选测量,用于量化贵金属和极化对氧表面交换系数的影响
- 批准号:
2241062 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Coefficients in p-adic Hodge theory
p-adic Hodge 理论中的系数
- 批准号:
22KF0094 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Postdoctoral Fellowship: AAPF: Improved Astrochemical Data for Diffuse Cloud Models: Theoretical Dissociative Recombination Rate Coefficients for OH+, H2O+, and H2Cl+
博士后奖学金:AAPF:改进弥散云模型的天体化学数据:OH、H2O 和 H2Cl 的理论解离重组率系数
- 批准号:
2303895 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Fellowship Award
CDS&E: Rigorous formulas for industrial supercritical-fluid mixture properties via systematic evaluation of molecular virial coefficients, and methods to expand their applicati
CDS
- 批准号:
2152946 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
A self-adaptive surrogate model for non-stationary responses with high-degree-of-freedom model coefficients obtained nonparametrically
非平稳响应的自适应代理模型,具有非参数获得的高自由度模型系数
- 批准号:
22K19765 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Modelling hyperbolic and elliptic elasticity with discontinuous coefficients using an error driven adaptive isogeometric basis
使用误差驱动的自适应等几何基础对具有不连续系数的双曲和椭圆弹性进行建模
- 批准号:
EP/W023202/1 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Research Grant
Using Genetic Similarity Quantified by Kinship Coefficients to Investigate Familial Contributions to Reading Disorder
利用亲属关系系数量化的遗传相似性来调查家庭对阅读障碍的影响
- 批准号:
10537060 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别: