EAGER: Drastic Enhancement of the Electrocatalytic Activity of Metal Nanoparticles in Oxygen Reduction by Organic Capping Ligands
EAGER:有机封端配体显着增强金属纳米粒子在氧还原中的电催化活性
基本信息
- 批准号:1258839
- 负责人:
- 金额:$ 11.15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-10-01 至 2013-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Technical MeritsWith the issues surrounding fossil fuel energy, it is important to develop viable technologies for the efficient utilization of reusable and green energy sources. Fuel cells represent a powerful alternative, representing a unique technology that will make substantial contributions to our energy needs by converting the chemical energy stored in small organic molecule fuels into electricity, and more importantly, exert minimal negative impacts on the environments. Yet, despite tremendous progress in recent years, there remain several challenges in the wide-spread commercialization of fuel cells. One of these entails the development of effective catalysts for both the anodic and cathodic reactions so as to achieve the current density that is needed for practical applications.In the search for effective electrocatalysts for the oxygen reduction reaction (ORR), prior research has mostly focused on the structural characteristics of noble metal nanoparticles (e.g., size, shape, elemental composition, etc.). Professor Shaowei Chen of the University of California-Santa Cruz, believes there is an alternative catalyst type that has promise. He believes that ORR may be manipulated and optimized by the organic capping ligands for the nanoparticles, which have been largely ignored and unexplored. In fact, conventionalwisdom dictates that nanoparticle catalysts should be free of organic passivating layers. Chen?s recent studies show that the nanoparticle electrocatalytic activity may actually bedrastically enhanced by deliberate chemical functionalization with selected organic ligands,despite the fact that part of the nanoparticle surface is covered with the organic ligands. This EAGER award is to continue the exploration of this exciting new area of research, includingfurther and more detailed studies to establish a fundamental framework for the largely unknown performance impact of metal nanoparticles functionalized with metal-carbon covalent linkages.Broader ImpactsBreakthroughs in fuel cell technology are anticipated to affect many aspects of our lives and tobenefit the society as a whole. This is a relatively novel approach to prepare metal nanoparticlesstabilized by metal-carbon covalent bonds with unique aromatic derivatives and to examinetheir applications as effective and viable catalysts for the electroreduction of oxygen, a criticalprocess at fuel cell cathode. Improved performance may ultimately bring fuel cells into practical reality as energy sources. The research activities will be closely integrated with various educational outreach programs at the university (e.g., the UC LEADS, ACCESS, and SURF programs) that target minority, women, and disadvantaged undergraduate students, as well as the UCSC COSMOS summer school for talented high-school students. These research internships provide a valuable platform for the students to acquire skills that are unattainable in a conventional classroom.
技术优势随着化石燃料能源的问题,重要的是开发可行的技术,有效利用可重复使用的绿色能源。燃料电池是一种强大的替代方案,代表了一种独特的技术,通过将储存在小有机分子燃料中的化学能转化为电能,为我们的能源需求做出重大贡献,更重要的是,对环境的负面影响最小。然而,尽管近年来取得了巨大进展,但在燃料电池的广泛商业化方面仍然存在一些挑战。其中之一需要开发用于阳极和阴极反应的有效催化剂,以便实现实际应用所需的电流密度。在寻找用于氧还原反应(ORR)的有效电催化剂时,先前的研究主要集中在贵金属纳米颗粒的结构特征(例如,尺寸、形状、元素组成等)。加州大学圣克鲁斯分校的陈少伟教授认为,有一种替代催化剂类型是有希望的。他认为,ORR可以通过纳米颗粒的有机封端配体来操纵和优化,这在很大程度上被忽视和未被探索。事实上,传统观点认为纳米颗粒催化剂应该不含有机钝化层。陈?最近的研究表明,纳米粒子的电催化活性实际上可能会大大提高故意化学功能化与选定的有机配体,尽管事实上,部分纳米粒子表面覆盖的有机配体。EAGER奖旨在继续探索这一令人兴奋的新研究领域,包括进一步和更详细的研究,以建立一个基本框架,以了解金属-碳共价键功能化的金属纳米颗粒对性能的影响。更广泛的影响燃料电池技术的突破预计将影响我们生活的许多方面,并使整个社会受益。这是一个相对新颖的方法来制备由金属-碳共价键与独特的芳香族衍生物稳定的金属纳米粒子,并检查其作为有效的和可行的催化剂用于氧的电还原,在燃料电池阴极的关键过程的应用。改进的性能可能最终使燃料电池作为能源成为现实。研究活动将与大学的各种教育推广计划紧密结合(例如,加州大学领导,访问,和SURF计划),目标是少数民族,妇女和弱势本科生,以及UCSC宇宙暑期学校有才华的高中生。这些研究实习为学生提供了一个宝贵的平台,以获得在传统课堂上无法获得的技能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shaowei Chen其他文献
Gluing higher-topological-type semiclassical states for nonlinear Schrodinger equations
粘合非线性薛定谔方程的更高拓扑类型半经典态
- DOI:
10.1007/s10231-021-01130-5 - 发表时间:
2021 - 期刊:
- 影响因子:1
- 作者:
Shaowei Chen;Zhi-Qiang Wang - 通讯作者:
Zhi-Qiang Wang
Hierarchical spheres constructed by defect-rich MoS2/carbon nanosheets for efficient electrocatalytic hydrogen evolution
由富含缺陷的MoS2/碳纳米片构建的分层球体用于高效电催化析氢
- DOI:
10.1016/j.nanoen.2016.02.056 - 发表时间:
2016-04 - 期刊:
- 影响因子:17.6
- 作者:
Linjing Yang;Weijia Zhou;Jia Lu;Dongman Hou;Yunting Ke;Guoqiang Li;Zhenghua Tang;Xiongwu Kang;Shaowei Chen - 通讯作者:
Shaowei Chen
Multi-bump Solutions for a Strongly Indefinite Semilinear Schr\
- DOI:
10.1016/j.na.2007.03.001 - 发表时间:
2008-05 - 期刊:
- 影响因子:0
- 作者:
Shaowei Chen - 通讯作者:
Shaowei Chen
Single electron transfer in thermally annealed nanoparticle dropcast thick films
热退火纳米颗粒滴铸厚膜中的单电子转移
- DOI:
10.1063/1.3076132 - 发表时间:
2009 - 期刊:
- 影响因子:4
- 作者:
S. Pradhan;Xiongwu Kang;E. Mendoza;Shaowei Chen - 通讯作者:
Shaowei Chen
New critical point theorem and infinitely many small-magnitude solutions of a nonlinear Iwatsuka model
- DOI:
10.1016/j.jmaa.2023.127605 - 发表时间:
2023-07 - 期刊:
- 影响因子:1.3
- 作者:
Shaowei Chen - 通讯作者:
Shaowei Chen
Shaowei Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shaowei Chen', 18)}}的其他基金
Point of Anchor: Impacts on Interfacial Charge Transfer of Semiconductor Nanoparticles
锚点:对半导体纳米颗粒界面电荷转移的影响
- 批准号:
2003685 - 财政年份:2020
- 资助金额:
$ 11.15万 - 项目类别:
Standard Grant
Atomically Dispersed Metal Catalysts for Electrochemical Hydrogen Evolution
用于电化学析氢的原子分散金属催化剂
- 批准号:
1900235 - 财政年份:2020
- 资助金额:
$ 11.15万 - 项目类别:
Standard Grant
Rational Design and Engineering of Graphene-Based Functional Nanocomposites as Effective Antimicrobial Reagents
作为有效抗菌试剂的石墨烯基功能纳米复合材料的合理设计和工程
- 批准号:
1848841 - 财政年份:2019
- 资助金额:
$ 11.15万 - 项目类别:
Standard Grant
Manipulation of Intraparticle Charge Delocalization by Conjugated Metal-Ligand Interfacial Bonds
通过共轭金属-配体界面键操纵粒子内电荷离域
- 批准号:
1710408 - 财政年份:2017
- 资助金额:
$ 11.15万 - 项目类别:
Standard Grant
Functional Patchy Nanoparticles by Interfacial Engineering
通过界面工程制备功能性片状纳米颗粒
- 批准号:
1409396 - 财政年份:2014
- 资助金额:
$ 11.15万 - 项目类别:
Standard Grant
SusChEM: Metal Nanoclusters as Effective Electrocatalysts for Oxygen Reduction
SusChEM:金属纳米团簇作为有效的氧还原电催化剂
- 批准号:
1265635 - 财政年份:2013
- 资助金额:
$ 11.15万 - 项目类别:
Continuing Grant
Impacts of Metal-Ligand Interfacial Bonding Interactions on Nanoparticle Charge Transfer Dynamics
金属-配体界面键合相互作用对纳米颗粒电荷转移动力学的影响
- 批准号:
1012258 - 财政年份:2010
- 资助金额:
$ 11.15万 - 项目类别:
Standard Grant
Janus Nanoparticles by Interfacial Engineering
Janus 纳米粒子的界面工程
- 批准号:
0804049 - 财政年份:2008
- 资助金额:
$ 11.15万 - 项目类别:
Continuing Grant
CRC: Nanoparticle-Mediated Electronic Communication
CRC:纳米粒子介导的电子通信
- 批准号:
0832605 - 财政年份:2008
- 资助金额:
$ 11.15万 - 项目类别:
Continuing Grant
Solid-State Single Electron Transfer of Nanoparticle Monolayers
纳米粒子单层的固态单电子转移
- 批准号:
0718170 - 财政年份:2007
- 资助金额:
$ 11.15万 - 项目类别:
Continuing Grant
相似海外基金
Elucidating conditions associated with drastic reduction of resilience in Bornean tropical timber production forests
阐明与婆罗洲热带木材生产林恢复力急剧下降相关的条件
- 批准号:
23K19306 - 财政年份:2023
- 资助金额:
$ 11.15万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Study on drastic increase of extraction efficiency of oscillator type free electron laser
振荡式自由电子激光器提取效率大幅提高的研究
- 批准号:
22H03871 - 财政年份:2022
- 资助金额:
$ 11.15万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
New Approach to Deep Learning by Introducing Language Model for Drastic Improvement of Automated Driving Reliability
引入语言模型的深度学习新方法,大幅提高自动驾驶可靠性
- 批准号:
21K03985 - 财政年份:2021
- 资助金额:
$ 11.15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Highly Efficient Semiconductor Membrane Lasers toward Drastic Reduction of Data Transmission Energy Cost
高效半导体膜激光器可大幅降低数据传输能源成本
- 批准号:
20H02200 - 财政年份:2020
- 资助金额:
$ 11.15万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Measurement of shear properties of granular media under extremely low confining stress states aiming at drastic innovation of modelling of liquefaction characteristics of sands
极低围压状态下颗粒介质剪切特性的测量,旨在砂土液化特性建模的重大创新
- 批准号:
20K20538 - 财政年份:2020
- 资助金额:
$ 11.15万 - 项目类别:
Grant-in-Aid for Challenging Research (Pioneering)
A study on drastic improvement of optical fiber transmission performance using deep learning
利用深度学习大幅提高光纤传输性能的研究
- 批准号:
20K04532 - 财政年份:2020
- 资助金额:
$ 11.15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Tissue diagnosis using quantitative phase imaging: drastic improvement in throughput and recognition accuracy by AI
使用定量相位成像进行组织诊断:AI 大幅提高吞吐量和识别精度
- 批准号:
20K05362 - 财政年份:2020
- 资助金额:
$ 11.15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Novel concept of IVR system based on object identification in X-ray fluroscopic images for drastic dose reduction
基于 X 射线透视图像中的对象识别的 IVR 系统新概念,可大幅减少剂量
- 批准号:
19H04478 - 财政年份:2019
- 资助金额:
$ 11.15万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Control of drastic spin-responses in strongly spin-orbit coupled systems
强自旋轨道耦合系统中剧烈自旋响应的控制
- 批准号:
19H01850 - 财政年份:2019
- 资助金额:
$ 11.15万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
A study on computer memory systems achieving drastic energy efficiency by controllably accepting bit-flip errors
通过可控地接受位翻转错误来实现显着能源效率的计算机存储系统研究
- 批准号:
19H01108 - 财政年份:2019
- 资助金额:
$ 11.15万 - 项目类别:
Grant-in-Aid for Scientific Research (A)














{{item.name}}会员




