CAREER: Model-based Analysis of Dynamic Networks using Continuous-time Network Models
职业:使用连续时间网络模型对动态网络进行基于模型的分析
基本信息
- 批准号:2318751
- 负责人:
- 金额:$ 55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-10-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Networks are all around us in many forms, ranging from online social networks to public transportation networks to gene networks in biology. Most networks change over time and are often called temporal or dynamic networks. In this project, a framework for modeling and analyzing dynamic networks that change continuously over time will be developed, even though the networks may only be periodically observed. This framework advances the interdisciplinary field of network science along with the computer and information sciences by developing models to separate the underlying dynamics of the networks from the times at which the networks are observed. The framework can be applied to analyze dynamic network data in many scientific disciplines and in public health applications, including networks of face-to-face interactions between people, which can help scientists better understand the spread of infectious diseases such as COVID-19. This project advances education in network science by creating a curriculum for instruction of dynamic networks at the undergraduate and graduate levels. The project also trains new graduate and undergraduate students, including female students from the University of Toledo's ACM-W chapter, in interdisciplinary data science research. Finally, the project develops and integrates methods for analyzing dynamic networks into the open-source DyNetworkX Python package to reach others who could use them in impactful ways.Temporal dynamics in networks are known to provide crucial information about the underlying complex systems being modeled by the networks. While significant advances have been made towards understanding the structure of static networks, dynamics are usually incorporated in an ad-hoc manner by creating discrete time snapshots aggregated over some arbitrary time period, primarily for convenience of analysis. The goal of this project is to develop a unified framework for model-based analysis of dynamic networks using continuous-time models that can be applied to both discrete- and continuous-time dynamic network data. Towards this goal, the research team will target five specific aims: 1) learning continuous-time network models from aggregated counts of relational events over time, 2) creating Hawkes process-based generative models for timestamped events with durations, 3) developing kernel smoothing approaches for analyzing dynamic networks, 4) modeling different types of measurement error in dynamic network data, and 5) creating time- and memory-efficient dynamic graph data structures to enable analysis of large dynamic networks with high temporal resolution. Dynamics of networks are given minimal coverage in current network science curricula and textbooks. The model-based analysis techniques to be developed in this project build upon fundamental network theory and empirical observations about real networks and are thus ideal for integration into a typical graduate or undergraduate network science course. The investigator will develop a publicly-available curriculum for instruction on dynamic network representations, models, and analysis methods. The results of this project will provide a glimpse of the possibilities enabled by continuous-time network models and guide future research and education efforts on dynamic networks.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
网络以多种形式存在于我们周围,从在线社交网络到公共交通网络,再到生物学中的基因网络。大多数网络会随着时间的推移而变化,通常被称为时间网络或动态网络。在这个项目中,将开发一个用于建模和分析随时间不断变化的动态网络的框架,即使网络可能只能定期观察。该框架通过开发模型将网络的潜在动态与观察网络的时间分开,从而沿着计算机和信息科学,推进了网络科学的跨学科领域。该框架可用于分析许多科学学科和公共卫生应用中的动态网络数据,包括人与人之间面对面互动的网络,这可以帮助科学家更好地了解COVID-19等传染病的传播。该项目通过在本科和研究生阶段创建动态网络教学课程来推进网络科学教育。该项目还培训新的研究生和本科生,包括托莱多大学ACM-W分会的女学生,进行跨学科数据科学研究。最后,该项目开发并将分析动态网络的方法集成到开源的DyNetworkX Python包中,以达到其他可以以有效方式使用它们的人。众所周知,网络中的时间动态可以提供有关网络建模的底层复杂系统的关键信息。虽然在理解静态网络的结构方面已经取得了重大进展,但动态通常通过创建在任意时间段内聚合的离散时间快照以特别的方式并入,主要是为了便于分析。该项目的目标是开发一个统一的框架,用于使用连续时间模型对动态网络进行基于模型的分析,该模型可应用于离散和连续时间动态网络数据。为了实现这一目标,研究小组将针对五个具体目标:1)从随时间的关系事件的聚集计数学习连续时间网络模型,2)为具有持续时间的时间戳事件创建基于Hawkes过程的生成模型,3)开发用于分析动态网络的核平滑方法,4)对动态网络数据中的不同类型的测量误差建模,以及5)创建时间和存储器高效的动态图数据结构,以使得能够以高时间分辨率分析大型动态网络。在当前的网络科学课程和教科书中,网络动力学的覆盖面很小。基于模型的分析技术将在这个项目中开发的基础网络理论和经验观察真实的网络,因此是理想的集成到一个典型的研究生或本科生网络科学课程。研究人员将开发一个公开的课程,用于动态网络表示,模型和分析方法的教学。该项目的结果将提供一个由连续时间网络模型所实现的可能性的一瞥,并指导未来的研究和教育工作的动态networks.This奖项反映了NSF的法定使命,并已被认为是值得的支持,通过评估使用基金会的知识价值和更广泛的影响审查标准。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Mutually Exciting Latent Space Hawkes Process Model for Continuous-time Networks
- DOI:10.48550/arxiv.2205.09263
- 发表时间:2022-05
- 期刊:
- 影响因子:0
- 作者:Zhipeng Huang;Hadeel Soliman;Subhadeep Paul;Kevin S. Xu
- 通讯作者:Zhipeng Huang;Hadeel Soliman;Subhadeep Paul;Kevin S. Xu
Counteracting filter bubbles with homophily-aware link recommendations
通过同质感知链接推荐来消除过滤气泡
- DOI:10.1007/978-3-031-17114-7_15
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Warton, Robert;Volny, Chris;Xu, Kevin S.
- 通讯作者:Xu, Kevin S.
A hybrid adjacency and time-based data structure for analysis of temporal networks
- DOI:10.1007/s41109-022-00489-5
- 发表时间:2022-06
- 期刊:
- 影响因子:2.2
- 作者:Tanner Hilsabeck;Makan Arastuie;Kevin S. Xu
- 通讯作者:Tanner Hilsabeck;Makan Arastuie;Kevin S. Xu
The Multivariate Community Hawkes model for dependent relational events in continuous-time networks
连续时间网络中依赖关系事件的多元社区霍克斯模型
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Soliman, Hadeel;Zhao, Lingfei;Huang, Zhipeng;Paul, Subhadeep;Xu, Kevin S.
- 通讯作者:Xu, Kevin S.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kevin Xu其他文献
GABAPENTIN UTILIZATION AMONG BUPRENORPHINE-PRESCRIBED INDIVIDUALS WITH OPIOID USE DISORDER AND ASSOCIATED RISK OF OVERDOSE
阿片类药物使用障碍且有过量用药相关风险的丁丙诺啡处方个体中加巴喷丁的使用情况
- DOI:
10.1016/j.drugalcdep.2023.109986 - 发表时间:
2024-07-01 - 期刊:
- 影响因子:3.600
- 作者:
Matthew Ellis;Kevin Xu;Vitor Tardelli;Thiago M Fidalgo;Mance Buttram;Richard A Grucza - 通讯作者:
Richard A Grucza
Building Real-World Chatbot Interviewers: Lessons from a Wizard-of-Oz Field Study
构建真实世界的聊天机器人面试官:绿野仙踪实地研究的经验教训
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Michelle X. Zhou;Carolyn Wang;G. Mark;Huahai Yang;Kevin Xu - 通讯作者:
Kevin Xu
NanoBlot: A Simple Tool for Visualization of RNA Isoform Usage From Third Generation RNA-sequencing Data
NanoBlot:从第三代 RNA 测序数据中可视化 RNA 同工型使用情况的简单工具
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Sam Demario;Kevin Xu;Kevin He;G. Chanfreau - 通讯作者:
G. Chanfreau
340. Predicting PTSD Development With Early Post-Trauma Assessments: A Succinct Tree-Based Classification
- DOI:
10.1016/j.biopsych.2024.02.839 - 发表时间:
2024-05-15 - 期刊:
- 影响因子:
- 作者:
Elyssa Feuer;Hong Xie;Kevin Xu;Stephen Grider;Xin Wang;Chia-Hao Shih - 通讯作者:
Chia-Hao Shih
strongPrescription Psychostimulant Use in Pregnant People With Opioid Use Disorder: An Analysis of Buprenorphine Retention and Acute Substance Use Disorder-Related Events/strong
阿片类药物使用障碍孕妇中强效处方精神兴奋剂的使用:对丁丙诺啡保留和急性物质使用障碍相关事件的分析
- DOI:
10.1016/j.drugalcdep.2023.109963 - 发表时间:
2024-07-01 - 期刊:
- 影响因子:3.600
- 作者:
Kevin Xu;Tiffani Berkel;Caitlin Martin;Hendree Jones;Jeannie Kelly;Ebony Carter;Frances Levin;Carrie Mintz;Richard Grucza - 通讯作者:
Richard Grucza
Kevin Xu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kevin Xu', 18)}}的其他基金
CAREER: Model-based Analysis of Dynamic Networks using Continuous-time Network Models
职业:使用连续时间网络模型对动态网络进行基于模型的分析
- 批准号:
2047955 - 财政年份:2021
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
CRII: III: Generative Models for Robust Real-Time Analysis of Complex Dynamic Networks
CRII:III:复杂动态网络鲁棒实时分析的生成模型
- 批准号:
1755824 - 财政年份:2018
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
ATD: Collaborative Research: Spatio-Temporal Data Analysis with Dynamic Network Models
ATD:协作研究:使用动态网络模型进行时空数据分析
- 批准号:
1830412 - 财政年份:2018
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
相似国自然基金
基于术中实时影像的SAM(Segment anything model)开发AI指导房间隔穿刺位置决策的增强现实模型
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
应用Agent-Based-Model研究围术期单剂量地塞米松对手术切口愈合的影响及机制
- 批准号:81771933
- 批准年份:2017
- 资助金额:50.0 万元
- 项目类别:面上项目
基于Multilevel Model的雷公藤多苷致育龄女性闭经预测模型研究
- 批准号:81503449
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
基于非齐性 Makov model 建立病证结合的绝经后骨质疏松症早期风险评估模型
- 批准号:30873339
- 批准年份:2008
- 资助金额:32.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Efficient Large Language Model Inference Through Codesign: Adaptable Software Partitioning and FPGA-based Distributed Hardware
职业:通过协同设计进行高效的大型语言模型推理:适应性软件分区和基于 FPGA 的分布式硬件
- 批准号:
2339084 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
CAREER: Co-designing a Service Exchange Model for Sustaining Community-based Respite Care
职业:共同设计服务交换模型以维持基于社区的临时护理
- 批准号:
2145049 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
CAREER: Model-based compression and probabilistic analysis of non-Markovian sequences
职业:非马尔可夫序列的基于模型的压缩和概率分析
- 批准号:
2144974 - 财政年份:2022
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
CAREER: Reconciling Model-Based and Learning-Based Imaging: Theory, Algorithms, and Applications
职业:协调基于模型和基于学习的成像:理论、算法和应用
- 批准号:
2043134 - 财政年份:2021
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
CAREER: Model-based Analysis of Dynamic Networks using Continuous-time Network Models
职业:使用连续时间网络模型对动态网络进行基于模型的分析
- 批准号:
2047955 - 财政年份:2021
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
Career Formation of Graduates in Rural Ghana: A Follow-up Study Based on a Multi-track Model
加纳农村毕业生的职业形成:基于多轨模型的跟踪研究
- 批准号:
21K13531 - 财政年份:2021
- 资助金额:
$ 55万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: A Model-Based Rosetta Stone to Decipher the Stratigraphic Expression of Glacial Isostasy
事业:基于模型的罗塞塔石碑破译冰川均衡的地层表达
- 批准号:
2046244 - 财政年份:2021
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
Proposal of education model for social implementation based on analysis of career development effect after graduation by social implementation ability cultivated in science and technology education
基于科技教育培养的社会实施能力对毕业后职业发展影响分析的社会实施教育模式建议
- 批准号:
20H01751 - 财政年份:2020
- 资助金额:
$ 55万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
CAREER: The Science of Measurement-based Stability Assessment and Model Validation for Microgrids
职业:基于测量的微电网稳定性评估和模型验证科学
- 批准号:
1944689 - 财政年份:2020
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
CAREER: Advancing Space Optical Communication Systems Via Hybrid Model-Based and Learning-Based Frameworks
职业:通过基于模型和基于学习的混合框架推进空间光通信系统
- 批准号:
1944828 - 财政年份:2020
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant