Morphology and Mobility Control for Functional Robust Flexible Electronics and Photovoltaics
功能鲁棒柔性电子和光伏的形态和迁移率控制
基本信息
- 批准号:1264555
- 负责人:
- 金额:$ 39.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-08-01 至 2017-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
ABSTRACTPIs: Elsa Reichmanis and Martha GroverInstitution: Georgia Tech Research CorporationProposal Number: 1264555Title: Morphology and Mobility Control for Functional Robust Flexible Electronics and Photovoltaics The goal of this research program is to understand and predict the morphology of conjugated polymer materials applicable to flexible electronics, photovoltaics and sensors. The results of this research will enable the design and optimization of robust materials chemistries and the required, associated large-area, large-scale device fabrication process recipes. To exploit the unique capabilities of organic electronics in flexible devices and economical roll-to-roll high throughput printing, high charge carrier mobility is a prerequisite. However, mobility is highly dependent on the final morphology of the thin semiconducting film that serves as the device active layer. Organic semiconductors exhibit domains of crystalline-like order interspersed with amorphous regions, and the size and extent of order within each type of domain influences the molecular packing and subsequent electronic behavior. The morphology in all regions evolves as the film is deposited and processed. Intellectual Merit: Semiconductor morphology in polymer based organic electronics is highly sensitive to the chemistry of a given material, including monomer selection, polymer molecular weight and regioregularity, the solvent, and the substrate. The time-varying process history also impacts the resulting morphology, including temperature, evaporation rate, and the choice of processing method. Understanding the impact of chemistry and processing on the active layer morphology is very limited and is dominated by tedious, observational approaches. A coherent understanding of how π-conjugated semiconductor chains interact, associate and align to form the inter-connected nanocrystallite structures that are essential for charge carrier transport is lacking, and there are far too many design variables to effectively explore this vast design space using a purely empirical approach. In this research program, the PIs will do a synergistic experimental and modeling study based on two specific chemical systems and focusing on three distinct processing modes. Poly(3-hexylthiophene) (P3HT) is the most characterized material to date, and will be used to aid in the initial model-building efforts. They will then build upon the results and extend the studies to promising alternative high mobility systems, such as poly(benzothiazole-sexithiophene) (PBT6), recently designed and developed in the Reichmanis lab. The close coupling of experiments and morphology modeling is unique and will enable a mechanistic understanding of the dynamics of morphology evolution, which will further enable the rational design of robust, organic electronics manufacturing methodologies. Broader Impact: Cheap ubiquitous electronics could transform the world, from solar energy to biosensors to food safety monitoring. The PIs participation in the Georgia Tech Center for Organic Photonics and Electronics (COPE) will amplify the impact of this research, through interactions with COPE industrial associates. The PIs will explore opportunities to directly expose graduate students to industrial research in organic electronics through internships as well as regular research discussions. The graduate students will also benefit from participation (as IGERT affiliates) in the curriculum of the NSF IGERT program on Nanostructured Materials for Energy Storage and Conversion, for which Reichmanis is the PI, and Grover is a thrust leader. As part of this program, the PI and co-PI will initiate a new program aimed at educating female graduate students about paths to faculty positions.
摘要PI:艾尔莎Reichmanis和玛莎Grover机构:格鲁吉亚技术研究公司建议编号:1264555标题:形态和流动性控制功能强大的柔性电子和光电子学本研究计划的目标是了解和预测形态的共轭聚合物材料适用于柔性电子,光电子学和传感器。这项研究的结果将使设计和优化的强大的材料化学和所需的,相关的大面积,大规模的设备制造工艺配方。为了在柔性器件和经济的卷对卷高吞吐量印刷中利用有机电子器件的独特能力,高电荷载流子迁移率是先决条件。然而,迁移率高度依赖于用作器件有源层的薄半导体膜的最终形态。有机半导体表现出散布有非晶区域的晶体状有序的域,并且每种类型的域内的有序的大小和程度影响分子堆积和随后的电子行为。所有区域中的形态随着膜的沉积和处理而演变。智力优势:基于聚合物的有机电子器件中的半导体形态对给定材料的化学性质高度敏感,包括单体选择、聚合物分子量和区域规整性、溶剂和基底。随时间变化的工艺历史也会影响所得的形态,包括温度、蒸发速率和加工方法的选择。了解化学和加工对活性层形态的影响是非常有限的,主要是由繁琐的,观察的方法。一个连贯的理解如何#960;&- 共轭半导体链相互作用、缔合和排列以形成对于电荷载流子传输必不可少的互连纳米微晶石结构,并且存在太多的设计变量以使用纯经验方法有效地探索这种巨大的设计空间。在这项研究计划中,PI将基于两个特定的化学系统进行协同实验和建模研究,并专注于三种不同的处理模式。聚(3-己基噻吩)(P3HT)是迄今为止最具特征的材料,并将用于帮助最初的模型构建工作。然后,他们将在结果的基础上,将研究扩展到有前途的替代高迁移率系统,例如最近在Reichmanis实验室设计和开发的聚(苯并噻唑-六噻吩)(PBT6)。 实验和形态建模的紧密结合是独特的,将使形态演变的动态机制的理解,这将进一步使稳健的,有机电子制造方法的合理设计。更广泛的影响:廉价的无处不在的电子产品可以改变世界,从太阳能到生物传感器到食品安全监测。PI参与格鲁吉亚有机光子学和电子技术中心(COPE)将通过与COPE工业伙伴的互动来扩大这项研究的影响。PI将探索机会,通过实习和定期研究讨论,直接让研究生接触有机电子工业研究。研究生也将受益于参与(作为IGERT附属机构)在NSF IGERT计划的纳米结构材料的能源存储和转换,其中Reichmanis是PI的课程,格罗弗是一个推力的领导者。作为该计划的一部分,PI和co-PI将启动一个新的计划,旨在教育女研究生关于教师职位的路径。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Elsa Reichmanis其他文献
Polythiophene side chain chemistry and its impact on advanced composite anodes for lithium-ion batteries
聚噻吩侧链化学及其对锂离子电池先进复合阳极的影响
- DOI:
10.1039/d4cc06117a - 发表时间:
2024-12-02 - 期刊:
- 影响因子:4.200
- 作者:
Han Li;Haoze Ren;Zeyuan Sun;Siyu Qin;Armando Rodriguez Campos;Esther S. Takeuchi;Amy C. Marschilok;Kenneth J. Takeuchi;Elsa Reichmanis - 通讯作者:
Elsa Reichmanis
Elsa Reichmanis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Elsa Reichmanis', 18)}}的其他基金
Carboxyl-alkyl Functionalization for Sustainable Mixed Conduction Polymers: molecular design and mechanistic insights
可持续混合导电聚合物的羧基烷基官能化:分子设计和机理见解
- 批准号:
2408881 - 财政年份:2024
- 资助金额:
$ 39.92万 - 项目类别:
Continuing Grant
EAGER: TDM solar cells: Next generation perovskite-silicon tandem solar cells
EAGER:TDM 太阳能电池:下一代钙钛矿-硅串联太阳能电池
- 批准号:
1665279 - 财政年份:2017
- 资助金额:
$ 39.92万 - 项目类别:
Standard Grant
SusChEM: Fungal Proteins as Agents for Organization and Delivery of Electroactive Materials
SusChEM:真菌蛋白作为电活性材料组织和传递的试剂
- 批准号:
1609058 - 财政年份:2016
- 资助金额:
$ 39.92万 - 项目类别:
Continuing Grant
Efficient, Robust and Soluble Electron Transport Polymers
高效、坚固且可溶的电子传输聚合物
- 批准号:
1507205 - 财政年份:2015
- 资助金额:
$ 39.92万 - 项目类别:
Standard Grant
Extending the pi-Conjugation Length of Soluble Semiconducting Polymers to Effect Efficient Charge Transport
延长可溶性半导体聚合物的π共轭长度以实现高效的电荷传输
- 批准号:
1207284 - 财政年份:2012
- 资助金额:
$ 39.92万 - 项目类别:
Continuing Grant
IGERT: Nanostructured Materials for Energy Storage and Conversion
IGERT:用于能量存储和转换的纳米结构材料
- 批准号:
1069138 - 财政年份:2011
- 资助金额:
$ 39.92万 - 项目类别:
Continuing Grant
Diversity in the Top 50 Universities: "The Challenge to Lead"
前 50 名大学的多样性:“领导力的挑战”
- 批准号:
0127333 - 财政年份:2001
- 资助金额:
$ 39.92万 - 项目类别:
Standard Grant
Symposium on Opportunities for Women in Polymer Science: Theory, Experiment and Technology; August 21-26, 1994; Washington, DC
高分子科学领域女性机会研讨会:理论、实验和技术;
- 批准号:
9419080 - 财政年份:1994
- 资助金额:
$ 39.92万 - 项目类别:
Standard Grant
相似海外基金
Bio-inspired flow control studies under gust and turbulence effect for next-generation Urban Air Mobility aircraft.
下一代城市空中交通飞机阵风和湍流效应下的仿生流量控制研究。
- 批准号:
2865033 - 财政年份:2023
- 资助金额:
$ 39.92万 - 项目类别:
Studentship
Collaborative Research: Towards Task-Agnostic and Device-Agnostic Ankle Exoskeleton Control for Mobility Enhancement
协作研究:实现与任务无关和与设备无关的踝外骨骼控制以增强灵活性
- 批准号:
2328051 - 财政年份:2023
- 资助金额:
$ 39.92万 - 项目类别:
Standard Grant
Upper body Based Human-machine Shared Control for Assistive Mobility Devices
基于上半身的辅助移动设备人机共享控制
- 批准号:
22KJ0415 - 财政年份:2023
- 资助金额:
$ 39.92万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Innovative Developments of Flying Mobility Pioneered by Wireless Power Transfer and Motion Control Technologies
无线电力传输和运动控制技术引领的飞行出行创新发展
- 批准号:
23H00175 - 财政年份:2023
- 资助金额:
$ 39.92万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Collaborative Research: Towards Task-Agnostic and Device-Agnostic Ankle Exoskeleton Control for Mobility Enhancement
协作研究:实现与任务无关和与设备无关的踝外骨骼控制以增强灵活性
- 批准号:
2328050 - 财政年份:2023
- 资助金额:
$ 39.92万 - 项目类别:
Standard Grant
Sustainable smart city mobility enabled by Micro and Macro control flow optimisation of co-operative autonomous vehicles
通过协作自动驾驶车辆的微观和宏观控制流优化实现可持续的智能城市移动
- 批准号:
2789366 - 财政年份:2022
- 资助金额:
$ 39.92万 - 项目类别:
Studentship
Wearable sensing for human motor control research and mobility assistive devices: Capturing environmental features
用于人体运动控制研究和移动辅助设备的可穿戴传感:捕获环境特征
- 批准号:
RGPIN-2022-03878 - 财政年份:2022
- 资助金额:
$ 39.92万 - 项目类别:
Discovery Grants Program - Individual
CONNECTED SMART MOBILITY IN CANADA: COOPERATIVE VEHICLE-SIGNAL CONTROL
加拿大的互联智能出行:协作车辆信号控制
- 批准号:
RGPIN-2019-07248 - 财政年份:2022
- 资助金额:
$ 39.92万 - 项目类别:
Discovery Grants Program - Individual
Customizable cooperative multi-joint control to enhance walking mobility after stroke
可定制的协作多关节控制,增强中风后的行走灵活性
- 批准号:
10444685 - 财政年份:2022
- 资助金额:
$ 39.92万 - 项目类别:
Customizable cooperative multi-joint control to enhance walking mobility after stroke
可定制的协作多关节控制,增强中风后的行走灵活性
- 批准号:
10705056 - 财政年份:2022
- 资助金额:
$ 39.92万 - 项目类别: