SusChEM: Fungal Proteins as Agents for Organization and Delivery of Electroactive Materials

SusChEM:真菌蛋白作为电活性材料组织和传递的试剂

基本信息

  • 批准号:
    1609058
  • 负责人:
  • 金额:
    $ 39万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-07-15 至 2019-06-30
  • 项目状态:
    已结题

项目摘要

Nontechnical: This SusChEM award by the Biomaterials program in the Division of Materials Research to Georgia Institute of Technology is to investigate how natural materials combine structural stability with elegant function, and how that ability may be harnessed for the production of superior semiconducting polymer assemblies for flexible/stretchable electronics. These polymers, which transport charge or harvest photons to produce charge, depend upon organization into ideally defect-free macromolecular structures. The vision presented in this proposal is to exploit the ability of some fungal proteins to encapsulate and induce the self-assembly of semiconducting polymers into organized architectures that are expected to have exceptional electronic characteristics. These features will provide access to low-cost, high performance, flexible, stretchable electronics, which could transform technology as we know it today. This SusChEM project provides opportunities to integrate research and education in technologies that will impact society. Robust, flexible and stretchable electronic systems may enable affordable sensors for applications in monitoring the environment and personal health, flexible and conformal displays and many more. The students participating in this research will be cross-trained in multiple areas to expand their knowledge and experience for professional growth and career opportunities. Further, based upon Georgia Tech's Invention Studio, the investigators plan to adopt the model of student-led training to Materials Science & Engineering through creation of a new Materials Innovation Studio to champion problem-solving and creative applications of material sciences and engineering.Technical: This proposal will investigate how the structural stability and elegant functional properties of natural biomaterials could be harnessed for the production of superior and value added optoelectronic, and other high performance materials. These molecular or supramolecular entities depend upon organization and alignment of them into ideally defect-free, tightly stacked assemblies on a macromolecular scale. Using a class of amphiphilic fungal proteins known as hydrophobins, this proposal will exploit their ability to encapsulate and induce self-assembly of polymers into organized architectures with enhanced stacking and therefore unprecedented performance. These features are expected to provide access to low-cost, high performance, flexible, stretchable materials for many applications. Hydrophobins are powerful natural surfactants, known to form aqueous dispersions and even encapsulate gases, organic solvents, and polymer solutions. Using these fungal proteins, this project will study factors that control the maximum capsule loading, and explore the impact of crystal structure on electronic characteristics and design appropriate protocols to prepare high performance, flexible and stretchable optoelectronic materials for fabrication of devices and circuits. Students participating in this study will benefit from this multidisciplinary and collaborative environment to expand their knowledge and experience. The investigators plan a strong and long-running commitment to broadened participation of students in science and engineering, and in serving the community. Additionally, these researchers plan to expand Georgia Tech's Invention Studio with its student-led training to Materials Science & Engineering areas, and to take a leading role in problem-solving and creative applications of material sciences and engineering.
非技术性:该SusChEM奖由格鲁吉亚理工学院材料研究部的生物材料项目授予,旨在研究天然材料如何将联合收割机的结构稳定性与优雅的功能相结合,以及如何利用这种能力生产用于柔性/可拉伸电子产品的上级半导体聚合物组件。这些传输电荷或收集光子以产生电荷的聚合物依赖于组织成理想的无缺陷大分子结构。该提案中提出的愿景是利用一些真菌蛋白质封装和诱导半导体聚合物自组装成预期具有特殊电子特性的有组织结构的能力。这些功能将提供低成本,高性能,灵活,可拉伸的电子产品,这可能会改变我们今天所知道的技术。这个SusChEM项目提供了机会,将研究和教育整合在技术,将影响社会。坚固、灵活和可伸缩的电子系统可以使负担得起的传感器能够用于监测环境和个人健康、灵活和适形显示器等应用。参加这项研究的学生将在多个领域进行交叉培训,以扩大他们的专业成长和职业机会的知识和经验。此外,在格鲁吉亚理工学院发明工作室的基础上,研究人员计划通过创建一个新的材料创新工作室,采用学生主导的材料科学工程培训模式,以支持解决问题和材料科学与工程的创造性应用。技术:该提案将研究如何利用天然生物材料的结构稳定性和优雅的功能特性来生产上级和增值的光电材料和其他高性能材料。这些分子或超分子实体取决于它们在大分子尺度上的组织和排列成理想的无缺陷、紧密堆叠的组装体。使用一类被称为疏水蛋白的两亲性真菌蛋白,该提案将利用它们的能力来封装和诱导聚合物自组装成具有增强的堆叠和前所未有的性能的有组织的架构。这些特性有望为许多应用提供低成本、高性能、柔性、可拉伸的材料。疏水蛋白是强大的天然表面活性剂,已知可形成水性分散体,甚至包封气体、有机溶剂和聚合物溶液。利用这些真菌蛋白,该项目将研究控制最大胶囊负载的因素,并探索晶体结构对电子特性的影响,并设计适当的方案来制备高性能,柔性和可拉伸的光电材料,用于制造设备和电路。参加这项研究的学生将受益于这个多学科和协作的环境,以扩大他们的知识和经验。调查人员计划一个强大的和长期的承诺,以扩大学生在科学和工程的参与,并在服务社区。此外,这些研究人员计划扩大格鲁吉亚理工学院的发明工作室,以学生为主导的培训材料科学工程领域,并采取在解决问题和材料科学和工程的创造性应用的主导作用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Elsa Reichmanis其他文献

Polythiophene side chain chemistry and its impact on advanced composite anodes for lithium-ion batteries
聚噻吩侧链化学及其对锂离子电池先进复合阳极的影响
  • DOI:
    10.1039/d4cc06117a
  • 发表时间:
    2024-12-02
  • 期刊:
  • 影响因子:
    4.200
  • 作者:
    Han Li;Haoze Ren;Zeyuan Sun;Siyu Qin;Armando Rodriguez Campos;Esther S. Takeuchi;Amy C. Marschilok;Kenneth J. Takeuchi;Elsa Reichmanis
  • 通讯作者:
    Elsa Reichmanis

Elsa Reichmanis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Elsa Reichmanis', 18)}}的其他基金

Carboxyl-alkyl Functionalization for Sustainable Mixed Conduction Polymers: molecular design and mechanistic insights
可持续混合导电聚合物的羧基烷基官能化:分子设计和机理见解
  • 批准号:
    2408881
  • 财政年份:
    2024
  • 资助金额:
    $ 39万
  • 项目类别:
    Continuing Grant
EAGER: TDM solar cells: Next generation perovskite-silicon tandem solar cells
EAGER:TDM 太阳能电池:下一代钙钛矿-硅串联太阳能电池
  • 批准号:
    1665279
  • 财政年份:
    2017
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
Efficient, Robust and Soluble Electron Transport Polymers
高效、坚固且可溶的电子传输聚合物
  • 批准号:
    1507205
  • 财政年份:
    2015
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
Morphology and Mobility Control for Functional Robust Flexible Electronics and Photovoltaics
功能鲁棒柔性电子和光伏的形态和迁移率控制
  • 批准号:
    1264555
  • 财政年份:
    2013
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
Extending the pi-Conjugation Length of Soluble Semiconducting Polymers to Effect Efficient Charge Transport
延长可溶性半导体聚合物的π共轭长度以实现高效的电荷传输
  • 批准号:
    1207284
  • 财政年份:
    2012
  • 资助金额:
    $ 39万
  • 项目类别:
    Continuing Grant
IGERT: Nanostructured Materials for Energy Storage and Conversion
IGERT:用于能量存储和转换的纳米结构材料
  • 批准号:
    1069138
  • 财政年份:
    2011
  • 资助金额:
    $ 39万
  • 项目类别:
    Continuing Grant
Diversity in the Top 50 Universities: "The Challenge to Lead"
前 50 名大学的多样性:“领导力的挑战”
  • 批准号:
    0127333
  • 财政年份:
    2001
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
Symposium on Opportunities for Women in Polymer Science: Theory, Experiment and Technology; August 21-26, 1994; Washington, DC
高分子科学领域女性机会研讨会:理论、实验和技术;
  • 批准号:
    9419080
  • 财政年份:
    1994
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant

相似海外基金

Dynamically-resolved structural studies of proteins from fungal and bacterial pathogens
真菌和细菌病原体蛋白质的动态解析结构研究
  • 批准号:
    10711972
  • 财政年份:
    2023
  • 资助金额:
    $ 39万
  • 项目类别:
Arrestin proteins mediate microbial cellular adaptation and fungal virulence
抑制蛋白介导微生物细胞适应和真菌毒力
  • 批准号:
    10369482
  • 财政年份:
    2022
  • 资助金额:
    $ 39万
  • 项目类别:
Arrestin proteins mediate microbial cellular adaptation and fungal virulence
抑制蛋白介导微生物细胞适应和真菌毒力
  • 批准号:
    10612333
  • 财政年份:
    2022
  • 资助金额:
    $ 39万
  • 项目类别:
Direct electron transfer reaction established by fungal redox proteins
真菌氧化还原蛋白建立的直接电子转移反应
  • 批准号:
    22K14826
  • 财政年份:
    2022
  • 资助金额:
    $ 39万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Systematic Analysis of GPI Anchored Proteins in a Leading Fungal Pathogen
主要真菌病原体中 GPI 锚定蛋白的系统分析
  • 批准号:
    540442-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 39万
  • 项目类别:
    University Undergraduate Student Research Awards
Interplay of dirgent and jacalin-proteins in broad-spectrum disease resistance of plants against fungal pathogens
dirgent 和 jacalin 蛋白在植物对真菌病原体的广谱抗病性中的相互作用
  • 批准号:
    369034981
  • 财政年份:
    2017
  • 资助金额:
    $ 39万
  • 项目类别:
    Research Grants
Understanding the function of effector proteins used by fungal symbionts to activate beneficial plant pathways
了解真菌共生体用来激活有益植物途径的效应蛋白的功能
  • 批准号:
    1915129
  • 财政年份:
    2017
  • 资助金额:
    $ 39万
  • 项目类别:
    Studentship
Understanding the function of effector proteins used by fungal symbionts to activate beneficial plant pathways
了解真菌共生体用来激活有益植物途径的效应蛋白的功能
  • 批准号:
    BB/R506187/1
  • 财政年份:
    2017
  • 资助金额:
    $ 39万
  • 项目类别:
    Training Grant
The third role of effector proteins secreted by fungal phytopathogen
真菌植物病原体分泌的效应蛋白的第三个作用
  • 批准号:
    17H05022
  • 财政年份:
    2017
  • 资助金额:
    $ 39万
  • 项目类别:
    Grant-in-Aid for Young Scientists (A)
Hydrophobin proteins on the fungal frontline
真菌前线的疏水蛋白
  • 批准号:
    DP150104227
  • 财政年份:
    2015
  • 资助金额:
    $ 39万
  • 项目类别:
    Discovery Projects
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了