Collaborative Research: Self-circulating, self-regulating microreactor for on-chip gas generation from liquid reactants

合作研究:用于从液体反应物产生片上气体的自循环、自调节微反应器

基本信息

  • 批准号:
    1264739
  • 负责人:
  • 金额:
    $ 19.68万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-05-01 至 2017-04-30
  • 项目状态:
    已结题

项目摘要

PI: Likun Zhu(1), Huidan Yu (1), Desheng Men(2), Craig R. Friedrich(2)Institutions: (1) Indiana University, (2) Michigan Technological UniversityProposal Numbers: (1) 1264739 and (2) 1264549Title: Collaborative Research: Self-circulating, self-regulating microreactor for on-chip gas generation from liquid reactantsGeneration and handling of gaseous species with reduced parasitic power consumption and parasitic mass has been a growing challenge in many types of chemical reactors, including micro power sources, on-chip cell culturing systems, gas-liquid synthesis, micro flame ionization detectors, solar water splitting systems, and microbial electrolysis cells (MEC). To address this challenge, a self-circulating, self-regulating mechanism is proposed to generate gaseous species from liquid reactants on demand. The system involves little or zero parasitic power consumption and needs no discrete control system for regulation.Intellectual MeritThis work seeks to understand the process control and dynamics of an integrated microfluidic gas generator with self-circulation and self-regulation functionalities. This work is expected to establish the engineering and scientific foundation for highly-efficient, autonomous, on-demand gas generation systems for many applications. To achieve this objective, the research efforts will first be focused on fundamental understanding of the reactive multiphase flow in a microfluidic network with the proposed self-regulation, self-circulation mechanism. Catalytic decomposition of hydrogen peroxide will be employed as a basic model system to perform the fundamental studies. The dynamics of bubble-driven liquid circulation, self-regulation, mechanism of gas/liquid separation, and reactant utilization will be experimentally investigated. A comprehensive lattice Boltzmann method (LBM) model will be used to study the physics in the gas generator. Bubble dynamics is a focus for the numerical study. The LBM model and the related numerical simulation will be used to provide benchmarks for the experiments and to guide future designs. The micro reactor configuration will then be tested on two applications: high-performance small fuel cells for portable electronics and energy reclamation/treatment of waste water by MECs. The issues related to these two particular applications will be used to establish the foundation for future commercialization.Broader ImpactEfficient management and utilization of multiphase flow in microreactors have a broad range of applications. The successful implementation of this research could directly facilitate the development of high-energy-density power generation devices based on fuel cells, where hydrogen storage and delivery remain major technical challenges. The proposed approach may help overcome this problem by achieving autonomous pumping and control for on-demand hydrogen generation with little burden on system complexity and packaging. The work could also benefit a series of portable applications, such as portable electronics, implanted biomedical devices, and distributed microsystems with wireless communication capability. In addition, it could also benefit the development of scalable microbial electrolysis cells for hydrogen generation from renewable energy sources, while cleaning up waste water before its discharge. It is expected to further inspire similar approaches in on-chip cell culturing systems, micro flame ionization detector, solar water splitting systems, etc. Educational efforts will benefit through the involvement of minority students from the local community. Summer camps will be organized on both campuses to provide local high school students an opportunity to explore the interdisciplinary fields of micro/nanotechnology.
PI: Likun Zhu(1), Huidan Yu (1), Desheng Men(2), Craig R. Friedrich(2)Institutions: (1) Indiana University, (2) Michigan Technological UniversityProposal Numbers: (1) 1264739 and (2) 1264549Title: Collaborative Research: Self-circulating, self-regulating microreactor for on-chip gas generation from liquid在许多类型的化学反应器(包括微功率来源,芯片细胞培养系统,气液体合成,微火电离探测器,太阳能水分裂解系统和微生物电解细胞)(包括微功率来源)中,在许多类型的化学反应器(包括微功率来源)中,与寄生动力消耗降低和寄生质量的反应物变成和寄生质量的处理已成为越来越大的挑战。为了应对这一挑战,提出了一种自行循环,自我调节机制,以根据需要从液体反应物中产生气体物种。该系统涉及的寄生能力消耗很少或零,并且不需要离散的控制系统进行调节。智能优点旨在了解具有自行量和自我调节功能的集成微流体生成器的过程控制和动态。预计这项工作将为许多应用程序建立工程和科学基础。为了实现这一目标,研究工作将首先集中在具有拟议的自我调节机制的微流体网络中反应性多相流的基本理解上。过氧化氢的催化分解将被用作进行基本研究的基本模型系统。气泡驱动的液体循环,自我调节,气体/液体分离机制和反应物利用的动力学将进行实验研究。将使用综合的晶格Boltzmann方法(LBM)模型来研究气体发生器中的物理。气泡动力学是数值研究的重点。 LBM模型和相关的数值模拟将用于为实验提供基准并指导未来的设计。然后,将在两种应用上测试微反应器的配置:高性能的小型燃料电池用于便携式电子设备以及MECS对废水的能量回收/处理。与这两个特定应用相关的问题将用于为将来的商业化建立基础。在微反应器中,BOADER的影响有效的管理和多相流的利用具有广泛的应用。这项研究的成功实施可以直接促进基于燃料电池的高能密度发电设备的开发,在这种燃料电池中,氢存储和输送仍然是主要的技术挑战。提出的方法可以通过实现自动抽水和控制按需氢产生的自主泵和控制,而对系统的复杂性和包装负担很小,可以帮助克服这一问题。这项工作还可以使一系列便携式应用程序受益,例如便携式电子设备,植入的生物医学设备以及具有无线通信能力的分布式微型系统。此外,它还可以使可伸缩的微生物电解细胞的开发从可再生能源产生氢,同时在排出之前清理废水。预计,它将进一步激发片上细胞培养系统,微火电离探测器,太阳能水分分割系统等类似的方法。教育工作将通过当地社区的少数学生参与而受益。两个校园将组织夏令营,为当地的高中学生提供一个探索微/纳米技术跨学科领域的机会。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Likun Zhu其他文献

Basestation Choose and Power Allocation Aiming at Maximizing Energy-efficiency for Data Offloading LEO Satellite-ground Network
旨在最大限度提高数据卸载低轨星地网络能效的基站选择和功率分配
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shihan Jin;Tianyang Cao;Yaoming Huang;Likun Zhu;Jiangtao Liu;Haoyu Du;Mingjin Chen
  • 通讯作者:
    Mingjin Chen
Soft lithographic printing and transfer of photosensitive polymers: facile fabrication of free-standing structures and patterning fragile and unconventional substrates
光敏聚合物的软平版印刷和转移:轻松制造独立式结构并对易碎和非常规基材进行图案化
A new criterion of coalescence-induced microbubble detachment in three-dimensional microfluidic channel
三维微流道中聚结诱导微泡脱离的新判据
  • DOI:
    10.1063/5.0043155
  • 发表时间:
    2021-04
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Rou Chen;Shuiyi Zhou;Likun Zhu;Luoding Zhu;Weiwei Yan
  • 通讯作者:
    Weiwei Yan
Microfluidic platform with hierarchical micro/nanostructures and SELEX nucleic acid aptamer coating for isolation of circulating tumor cells
具有分层微/纳米结构和SELEX核酸适体涂层的微流控平台,用于分离循环肿瘤细胞
Operando Investigation of Energy Storage Material by FIB-SEM System
利用 FIB-SEM 系统对储能材料进行操作研究
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Xinwei Zhou;Likun Zhu;Yuzi Liu
  • 通讯作者:
    Yuzi Liu

Likun Zhu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Likun Zhu', 18)}}的其他基金

Collaborative Research: Fundamental understanding of interface dynamics in solid electrolyte batteries with liquid metal anode
合作研究:对液态金属阳极固体电解质电池界面动力学的基本了解
  • 批准号:
    2323474
  • 财政年份:
    2023
  • 资助金额:
    $ 19.68万
  • 项目类别:
    Standard Grant
Collaborative Research: Dynamics of chalcogenide-doped high capacity lithium-ion battery anode materials during cycling using in situ imaging
合作研究:利用原位成像研究硫属化物掺杂高容量锂离子电池负极材料在循环过程中的动力学
  • 批准号:
    1603847
  • 财政年份:
    2016
  • 资助金额:
    $ 19.68万
  • 项目类别:
    Standard Grant
Computed tomography image-based study for understanding the impact of electrode microstructure on lithium ion battery performance
基于计算机断层扫描图像的研究,用于了解电极微观结构对锂离子电池性能的影响
  • 批准号:
    1335850
  • 财政年份:
    2013
  • 资助金额:
    $ 19.68万
  • 项目类别:
    Standard Grant

相似国自然基金

Self-DNA介导的CD4+组织驻留记忆T细胞(Trm)分化异常在狼疮肾炎发病中的作用及机制研究
  • 批准号:
    82371813
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
“为自己的健康负责”——基于当责视角的健康管理APP对用户行为的作用机制研究
  • 批准号:
    72302199
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于受体识别和转运整合的self-DNA诱导采后桃果实抗病反应的机理研究
  • 批准号:
    32302161
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于广义测量的多体量子态self-test的实验研究
  • 批准号:
    12104186
  • 批准年份:
    2021
  • 资助金额:
    24.00 万元
  • 项目类别:
    青年科学基金项目
基于广义测量的多体量子态self-test的实验研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: FET: Small: Algorithmic Self-Assembly with Crisscross Slats
合作研究:FET:小型:十字交叉板条的算法自组装
  • 批准号:
    2329908
  • 财政年份:
    2024
  • 资助金额:
    $ 19.68万
  • 项目类别:
    Standard Grant
Collaborative Research: FET: Small: Algorithmic Self-Assembly with Crisscross Slats
合作研究:FET:小型:十字交叉板条的算法自组装
  • 批准号:
    2329909
  • 财政年份:
    2024
  • 资助金额:
    $ 19.68万
  • 项目类别:
    Standard Grant
DULCE (Diabetes InqUiry Through a Learning Collaborative Experience)
DULCE(通过学习协作体验进行糖尿病查询)
  • 批准号:
    10558119
  • 财政年份:
    2023
  • 资助金额:
    $ 19.68万
  • 项目类别:
Collaborative Research: DMREF: Deep learning guided twistronics for self-assembled quantum optoelectronics
合作研究:DMREF:用于自组装量子光电子学的深度学习引导双电子学
  • 批准号:
    2323470
  • 财政年份:
    2023
  • 资助金额:
    $ 19.68万
  • 项目类别:
    Standard Grant
Collaborative Research: Self-powered Electrochemical Actuators toward Untethered Soft Mobile Robots
合作研究:用于无束缚软移动机器人的自供电电化学执行器
  • 批准号:
    2329674
  • 财政年份:
    2023
  • 资助金额:
    $ 19.68万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了