Computed tomography image-based study for understanding the impact of electrode microstructure on lithium ion battery performance
基于计算机断层扫描图像的研究,用于了解电极微观结构对锂离子电池性能的影响
基本信息
- 批准号:1335850
- 负责人:
- 金额:$ 29.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-08-01 至 2017-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
PI: Zhu, LikunProposal Number: 1335850Institution: Indiana UniversityTitle: Computed tomography image-based study for understanding the impact of electrode microstructure on lithium ion battery performanceExtensive research has been conducted to develop advanced lithium ion battery (LIB) technologies to meet the demands of the ground transportation industry for LIBs with higher energy and power densities, lower cost, and safer operation. In addition to the development of advanced materials for the anode, cathode, and electrolyte, the structure of the electrodes at the micro- and nano-scales also plays a critical role in determining the performance of a LIB because the electrode?s composite matrix must be designed to provide both electron and lithium ion transportation, which eventually affects the LIB?s voltage, specific capacity, and discharge/charge rate. Currently, a fundamental understanding of the impact of an electrode?s microstructure on LIB performance is still lacking due to the inhomogeneity, complexity, and three-dimensional (3D) nature of the electrode?s microstructure. In this study, a novel approach is proposed to gain greater understanding of the microstructure of the electrode and its impact on the LIB?s physical and electrochemical performances when using liquid electrolytes as well as solid electrolytes (all-solid LIBs). The knowledge gained in this study is expected to help identify the optimal conditions of the composite electrode?s components and microstructure that will yield compact and safe LIBs with high energy and power densities.This research project takes a unique, interdisciplinary approach using experimental and theoretical analysis tools from the areas of electrochemistry, nanotechnology, transmission x-ray microscopy, material science, and numerical modeling. This work is expected to establish the engineering and scientific foundation for safe and high power/energy density LIBs. To achieve such an objective, the research efforts will first focus on the fundamental understanding of the porous microstructure of the composite electrode and its impact on the electrochemical performance of liquid electrolyte LIBs, followed by exploration into the impact of the electrode?s microstructure on all-solid LIB performances. X-ray nano-computed tomography (nano-CT) with sub-100 nm resolution will be employed to obtain the 3D microstructure of the LIB electrodes. For the first time, synchrotron x-ray nano-CT will be attempted to perform microstructural characterization of the composite electrode and to identify the particle/particle interface in all-solid LIBs. Both liquid electrolyte and all-solid LIB cells with finely tuned microstructure will be designed, fabricated, and characterized in the PIs? labs. A rich array of knowledge will be obtained through systematic experiments regarding the effects of various factors in the LIB electrodes. A comprehensive mathematical model and simulation framework based on the finite volume method will be established to reveal the physical and electrochemical processes in the electrode. The experimental and numerical results will be used to establish the correlations between the LIB?s performance and the electrode microstructure.The successful implementation of this research would directly facilitate the improvement of current LIBs that use liquid electrolytes and the development of next generation all-solid LIBs. The scientific and engineering knowledge gained from this project will improve battery capability allowing for the widespread use of environmentally sustainable energy sources, especially in ground transportation. Graduate and undergraduate students will gain critical hands-on research experience through this project. Summer camps will provide local high school students and K-12 teachers a unique opportunity to explore the interdisciplinary fields of advanced battery technologies and renewable energy.
PI: Zhu, LikunProposal Number: 1335850Institution: Indiana UniversityTitle: Computed tomography image-based study for understanding the impact of electrode microstructure on lithium ion battery performanceExtensive research has been conducted to develop advanced lithium ion battery (LIB) technologies to meet the demands of the ground transportation industry for LIBs with higher energy and power densities, lower cost, and safer operation.除了开发用于阳极,阴极和电解质的高级材料外,微型和纳米尺度在确定LIB的性能方面还起着至关重要的作用,因为必须设计电极的复合矩阵,以便提供电子和锂离子运输,最终会影响LIB的能力,并影响ILB的电量,并且要付出了特定的率,并且要驱动率,并且要驱动率。当前,由于电极的不均匀性,复杂性和电极微结构的三维(3D)性质,仍缺乏对电极微结构对LIB性能的影响的基本理解。在这项研究中,提出了一种新的方法,以更了解电极的微观结构及其对使用液体电解质以及固体电解质(所有固体Libs)时对LIB的物理和电化学性能的影响。 The knowledge gained in this study is expected to help identify the optimal conditions of the composite electrode?s components and microstructure that will yield compact and safe LIBs with high energy and power densities.This research project takes a unique, interdisciplinary approach using experimental and theoretical analysis tools from the areas of electrochemistry, nanotechnology, transmission x-ray microscopy, material science, and numerical modeling.预计这项工作将建立安全和高功率/能量密度的工程和科学基础。为了实现这一目标,研究工作将首先关注对复合电极多孔微观结构的基本理解及其对液体电解质LIBS电化学性能的影响,然后探索电极对所有固体LIB表现的影响。将采用X射线纳米计算的层析成像(纳米CT),分辨率低于100 nm,以获得LIB电极的3D微结构。首次将尝试尝试执行复合电极的微结构表征,并识别全稳态LIB中的粒子/粒子界面。将在PI中设计,制造和表征的具有细调的微结构的液体电解质和所有固体LIB细胞?实验室。通过系统的实验,将获得有关LIB电极中各种因素的影响,将获得丰富的知识。将建立一个基于有限体积方法的综合数学模型和仿真框架,以揭示电极中的物理和电化学过程。实验和数值结果将用于建立LIB的性能与电极微观结构之间的相关性。这项研究的成功实施将直接促进使用液体电解质以及下一代全稳态LIB的当前LIB的改善。从该项目中获得的科学和工程知识将提高电池能力,从而可以广泛使用环境可持续的能源,尤其是在地面运输方面。研究生和本科生将通过该项目获得关键的动手研究经验。夏令营将为当地的高中学生和K-12老师提供一个独特的机会,以探索高级电池技术和可再生能源的跨学科领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Likun Zhu其他文献
Basestation Choose and Power Allocation Aiming at Maximizing Energy-efficiency for Data Offloading LEO Satellite-ground Network
旨在最大限度提高数据卸载低轨星地网络能效的基站选择和功率分配
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Shihan Jin;Tianyang Cao;Yaoming Huang;Likun Zhu;Jiangtao Liu;Haoyu Du;Mingjin Chen - 通讯作者:
Mingjin Chen
Soft lithographic printing and transfer of photosensitive polymers: facile fabrication of free-standing structures and patterning fragile and unconventional substrates
光敏聚合物的软平版印刷和转移:轻松制造独立式结构并对易碎和非常规基材进行图案化
- DOI:
10.1088/0960-1317/24/11/115019 - 发表时间:
2014 - 期刊:
- 影响因子:2.3
- 作者:
Yaozhong Zhang;Jeahyeong Han;Likun Zhu;M. Shannon;J. Yeom - 通讯作者:
J. Yeom
A new criterion of coalescence-induced microbubble detachment in three-dimensional microfluidic channel
三维微流道中聚结诱导微泡脱离的新判据
- DOI:
10.1063/5.0043155 - 发表时间:
2021-04 - 期刊:
- 影响因子:4.6
- 作者:
Rou Chen;Shuiyi Zhou;Likun Zhu;Luoding Zhu;Weiwei Yan - 通讯作者:
Weiwei Yan
Microfluidic platform with hierarchical micro/nanostructures and SELEX nucleic acid aptamer coating for isolation of circulating tumor cells
具有分层微/纳米结构和SELEX核酸适体涂层的微流控平台,用于分离循环肿瘤细胞
- DOI:
10.1109/nano.2013.6720968 - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
V. Swaminathan;Spandana Gannavaram;Shihui Li;Huan Hu;J. Yeom;Yong Wang;Likun Zhu - 通讯作者:
Likun Zhu
Operando Investigation of Energy Storage Material by FIB-SEM System
利用 FIB-SEM 系统对储能材料进行操作研究
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:2.8
- 作者:
Xinwei Zhou;Likun Zhu;Yuzi Liu - 通讯作者:
Yuzi Liu
Likun Zhu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Likun Zhu', 18)}}的其他基金
Collaborative Research: Fundamental understanding of interface dynamics in solid electrolyte batteries with liquid metal anode
合作研究:对液态金属阳极固体电解质电池界面动力学的基本了解
- 批准号:
2323474 - 财政年份:2023
- 资助金额:
$ 29.1万 - 项目类别:
Standard Grant
Collaborative Research: Dynamics of chalcogenide-doped high capacity lithium-ion battery anode materials during cycling using in situ imaging
合作研究:利用原位成像研究硫属化物掺杂高容量锂离子电池负极材料在循环过程中的动力学
- 批准号:
1603847 - 财政年份:2016
- 资助金额:
$ 29.1万 - 项目类别:
Standard Grant
Collaborative Research: Self-circulating, self-regulating microreactor for on-chip gas generation from liquid reactants
合作研究:用于从液体反应物产生片上气体的自循环、自调节微反应器
- 批准号:
1264739 - 财政年份:2013
- 资助金额:
$ 29.1万 - 项目类别:
Continuing Grant
相似国自然基金
基于X射线断层扫描和3D图像分析的污泥干燥强化技术机理研究
- 批准号:51911530259
- 批准年份:2019
- 资助金额:10 万元
- 项目类别:国际(地区)合作与交流项目
基于OCT影像数据的慢性青光眼早期辅助诊断关键技术研究
- 批准号:61801263
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于机器学习的全角膜OCT图像于圆锥角膜早期预警性诊断和预后判断模型研究
- 批准号:81800877
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
基于结构与动态联合先验的PET心肌灌注直接4D参数成像方法
- 批准号:81871437
- 批准年份:2018
- 资助金额:57.0 万元
- 项目类别:面上项目
用于脑动脉瘤壁力学性能评价的光学相干弹性成像技术研究
- 批准号:11602166
- 批准年份:2016
- 资助金额:28.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 29.1万 - 项目类别:
Hyperpolarized 129Xe MRI to identify structural determinants of low lung function and respiratory symptoms in young adults from the Lung Health Cohort
超极化 129Xe MRI 用于识别肺健康队列中年轻人低肺功能和呼吸道症状的结构决定因素
- 批准号:
10639640 - 财政年份:2023
- 资助金额:
$ 29.1万 - 项目类别:
Risk stratifying indeterminate pulmonary nodules with jointly learned features from longitudinal radiologic and clinical big data
利用纵向放射学和临床大数据共同学习的特征对不确定的肺结节进行风险分层
- 批准号:
10678264 - 财政年份:2023
- 资助金额:
$ 29.1万 - 项目类别:
Pre-clinical Bruker Albira Si PET/SPECT/CT imaging system
临床前 Bruker Albira Si PET/SPECT/CT 成像系统
- 批准号:
10633022 - 财政年份:2023
- 资助金额:
$ 29.1万 - 项目类别:
Defining the molecular and radiologic phenotype of progressive RA-ILD
定义进行性 RA-ILD 的分子和放射学表型
- 批准号:
10634344 - 财政年份:2023
- 资助金额:
$ 29.1万 - 项目类别: