Collaborative Research: In situ Characterization of Methanol Oxidation Catalyzed by Copper-Based Materials

合作研究:铜基材料催化甲醇氧化的原位表征

基本信息

  • 批准号:
    1264940
  • 负责人:
  • 金额:
    $ 20.14万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-07-15 至 2018-06-30
  • 项目状态:
    已结题

项目摘要

Catalysts are used in the manufacturing of more than 60% of all synthesized chemicals and more than 90% of chemical industries use catalytic materials world-wide, with an estimated combined impact on the global economy of over $10 trillion per year. Furthermore, catalysis is essential to chemistry where reactants are efficiently converted to products while minimizing the production of by-products that are environmentally harmful. Yet, technological advancements in catalysis have frequently depended more on chemical intuition than fundamentals. The recent emergence of ?nano-characterization tools? has fundamentally changed this and is allowing the discovery of fundamental principles of catalysis via detailed characterization of catalysts and its correlation with their chemical reactivity. In a collaborative program between the University of Pittsburgh, SUNY Binghamton, and Brookhaven National Laboratory, PIs Judith Yang, Goetz Veser and Guangwen Zhou will use state-of-the-art characterization tools including environmental transmission electron microscopy, in situ scanning tunneling microscopy, and X-ray photoelectron spectroscopy, complemented with reactivity studies using a specially designed spatially resolved microreactor in order to gain essential insights into catalytic structure-reactivity relationships. The PIs will focus on copper-containing catalysts, a class of catalysts with importance for existing and emerging energy technologies, such as partial oxidation of methanol and the water-gas-shift reaction. Experiments will be performed on simple model systems including Cu single crystals and Cu oxides produced by controlled oxidation of Cu surfaces in-situ. Correlations between the phases and surface and interface structure of Cu-based catalysts and their catalytic activity will be identified. The results will be compared with commercially available Cu/ZnO catalysts to provide a commercial base-line for these fundamental studies. An important global topic such as energy production requires not only advances in scientific research, but trained people to aid in the transfer of these advances into industrial practice. The partnership between two major universities and a national laboratory will enrich the education of the students involved in this program. Graduate students will be trained in materials physics/chemistry and catalysis science and will learn about new microscopy, spectroscopy, kinetics and modeling techniques as well as materials issues that are at the forefront of current energy research. The training of graduate students in the broader area of clean energy technology, as well a fundamental scientific discipline (e.g., catalytic kinetics, materials science, physics, etc.), will result in future leaders that are better equipped to solve the complex energy and environmental problems that face society. Results from this project will also be incorporated into new graduate-level courses and high school outreach programs at both Universities.
全球60%以上的合成化学品使用催化剂,90%以上的化学工业使用催化材料,估计每年对全球经济的综合影响超过10万亿美元。此外,催化对于化学是必不可少的,在化学中,反应物被有效地转化为产品,同时最大限度地减少对环境有害的副产品的产生。然而,催化领域的技术进步往往更多地依赖于化学直觉,而不是基本面。最近出现的纳米表征工具?从根本上改变了这一点,并通过对催化剂的详细表征及其与其化学反应活性的关联来发现催化的基本原理。在匹兹堡大学、纽约州立大学宾厄姆顿分校和布鲁克海文国家实验室的合作项目中,PIS朱迪思·杨、Goetz Veser和周光文将使用最先进的表征工具,包括环境透射电子显微镜、原位扫描隧道显微镜和X射线光电子能谱,并辅之以使用特殊设计的空间分辨微反应器进行的反应性研究,以获得对催化结构-反应性关系的基本见解。投资促进计划将侧重于含铜催化剂,这类催化剂对现有和新兴能源技术具有重要意义,如甲醇部分氧化和水-气变换反应。实验将在简单的模型系统上进行,包括铜单晶和铜表面原位受控氧化生成的铜氧化物。铜基催化剂的物相、表面和界面结构与其催化活性之间的关系将被确定。这些结果将与商用的铜/氧化锌催化剂进行比较,为这些基础研究提供商业基线。能源生产这样一个重要的全球话题不仅需要在科学研究方面取得进展,还需要经过培训的人员帮助将这些进步转化为工业实践。两所主要大学和一个国家实验室之间的合作将丰富参与该项目的学生的教育。研究生将接受材料物理/化学和催化科学方面的培训,并将学习新的显微镜、光谱学、动力学和建模技术以及处于当前能源研究前沿的材料问题。在更广泛的清洁能源技术领域以及基础科学学科(如催化动力学、材料科学、物理学等)方面对研究生进行培训,将造就更有能力解决社会面临的复杂能源和环境问题的未来领导者。该项目的成果也将被纳入两所大学新的研究生课程和高中推广计划。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Guangwen Zhou其他文献

Annealing induced structural alternations in yttria partially stabilized zirconia
退火引起氧化钇部分稳定氧化锆的结构变化
  • DOI:
    10.1016/j.surfcoat.2018.11.059
  • 发表时间:
    2019-01
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Hua Luo;Yanguo Wang;Canying Cai;Guangwen Zhou;Yichun Zhou;Li Yang
  • 通讯作者:
    Li Yang
Atomically Visualizing Elemental Segregation-Induced Surface Alloying and Restructuring.
原子可视化元素偏析引起的表面合金化和重组。
  • DOI:
    10.1021/acs.jpclett.7b02947
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lianfeng Zou;Jonathan Li;D. Zakharov;W. Saidi;E. Stach;Guangwen Zhou
  • 通讯作者:
    Guangwen Zhou
Air-Formed Film: Mott–Cabrera Model
  • DOI:
    10.1016/b978-0-12-409547-2.13396-7
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Guangwen Zhou
  • 通讯作者:
    Guangwen Zhou
Effect of gold composition on the orientations of oxide nuclei during the early stage oxidation of Cu-Au alloys
金成分对Cu-Au合金早期氧化过程中氧化核取向的影响
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    L. Luo;Yihong Kang;Judith C. Yang;Guangwen Zhou
  • 通讯作者:
    Guangwen Zhou
Compositional-structural inhomogeneity and multi-layered oxide film formation on high-entropy alloys
高熵合金上的成分结构不均匀性和多层氧化膜形成
  • DOI:
    10.1016/j.actamat.2025.121278
  • 发表时间:
    2025-09-01
  • 期刊:
  • 影响因子:
    9.300
  • 作者:
    Huaqing Yi;Mengtian Liang;Jinpeng Zhang;Bingbing Yin;Jianyu Huang;Fugang Qi;Zhenhua Yang;Guangwen Zhou;Qianqian Jin;Jian Chen;Yi Yang
  • 通讯作者:
    Yi Yang

Guangwen Zhou的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Guangwen Zhou', 18)}}的其他基金

Atomistic mechanisms and dynamics of hydrogen-based reduction of iron ores
铁矿石氢基还原的原子机制和动力学
  • 批准号:
    2303712
  • 财政年份:
    2023
  • 资助金额:
    $ 20.14万
  • 项目类别:
    Standard Grant
Collaborative Research: Coordinated In-situ Dynamic Experiments and Atomistic Modeling of Surface Segregation in Alloys
合作研究:合金表面偏析的协调原位动态实验和原子建模
  • 批准号:
    1905422
  • 财政年份:
    2019
  • 资助金额:
    $ 20.14万
  • 项目类别:
    Standard Grant
Collaborative Research: Investigation of Fundamental Properties of Lead-free Nanosolders for Nanoscale Assembly and Nano-Joining
合作研究:用于纳米级组装和纳米连接的无铅纳米焊料的基本特性研究
  • 批准号:
    1233806
  • 财政年份:
    2012
  • 资助金额:
    $ 20.14万
  • 项目类别:
    Standard Grant
CAREER: Atomic Scale Study of Reduction of Metal Oxides
职业:金属氧​​化物还原的原子尺度研究
  • 批准号:
    1056611
  • 财政年份:
    2011
  • 资助金额:
    $ 20.14万
  • 项目类别:
    Standard Grant
Making Superior Alumina Thin Films via Ozone Oxidation of Aluminum: Correlation between Oxidation Mechanism and Nanoscale Atomic Structure in Amorphous Oxide Films
通过铝的臭氧氧化制备优质氧化铝薄膜:非晶氧化物薄膜中氧化机制与纳米级原子结构之间的相关性
  • 批准号:
    0932814
  • 财政年份:
    2009
  • 资助金额:
    $ 20.14万
  • 项目类别:
    Standard Grant
Probing Nanoscale Oxidation Mechanism of Metals under Applied Stress
探究施加应力下金属的纳米级氧化机制
  • 批准号:
    0825737
  • 财政年份:
    2008
  • 资助金额:
    $ 20.14万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Deciphering the mechanisms of marine nitrous oxide cycling using stable isotopes, molecular markers and in situ rates
合作研究:利用稳定同位素、分子标记和原位速率破译海洋一氧化二氮循环机制
  • 批准号:
    2319097
  • 财政年份:
    2024
  • 资助金额:
    $ 20.14万
  • 项目类别:
    Standard Grant
Collaborative Research: Using Polarimetric Radar Observations, Cloud Modeling, and In Situ Aircraft Measurements for Large Hail Detection and Warning of Impending Hail
合作研究:利用偏振雷达观测、云建模和现场飞机测量来检测大冰雹并预警即将发生的冰雹
  • 批准号:
    2344259
  • 财政年份:
    2024
  • 资助金额:
    $ 20.14万
  • 项目类别:
    Standard Grant
Collaborative Research: Using Polarimetric Radar Observations, Cloud Modeling, and In Situ Aircraft Measurements for Large Hail Detection and Warning of Impending Hail
合作研究:利用偏振雷达观测、云建模和现场飞机测量来检测大冰雹并预警即将发生的冰雹
  • 批准号:
    2344260
  • 财政年份:
    2024
  • 资助金额:
    $ 20.14万
  • 项目类别:
    Standard Grant
Collaborative Research: Deciphering the mechanisms of marine nitrous oxide cycling using stable isotopes, molecular markers and in situ rates
合作研究:利用稳定同位素、分子标记和原位速率破译海洋一氧化二氮循环机制
  • 批准号:
    2319096
  • 财政年份:
    2024
  • 资助金额:
    $ 20.14万
  • 项目类别:
    Standard Grant
Collaborative Research: Deciphering the mechanisms of marine nitrous oxide cycling using stable isotopes, molecular markers and in situ rates
合作研究:利用稳定同位素、分子标记和原位速率破译海洋一氧化二氮循环机制
  • 批准号:
    2319098
  • 财政年份:
    2024
  • 资助金额:
    $ 20.14万
  • 项目类别:
    Standard Grant
Collaborative Research: Chemo-Physics and Molecular Design of In-situ Hydrogel-MXene Biosensors
合作研究:原位水凝胶-MXene生物传感器的化学物理和分子设计
  • 批准号:
    2320716
  • 财政年份:
    2023
  • 资助金额:
    $ 20.14万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding Acoustoplasticity through Multiscale Computational and In-Situ, Time-Resolved Experimental Approach
合作研究:通过多尺度计算和原位时间分辨实验方法了解声塑性
  • 批准号:
    2148678
  • 财政年份:
    2023
  • 资助金额:
    $ 20.14万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Insights into the Hydrogen Evolution Reaction of Transition Metal Dichalcogenide Nanocrystals by In-situ Electron Paramagnetic Resonance Spectroscopy
合作研究:EAGER:通过原位电子顺磁共振波谱洞察过渡金属二硫族化物纳米晶体的析氢反应
  • 批准号:
    2302783
  • 财政年份:
    2023
  • 资助金额:
    $ 20.14万
  • 项目类别:
    Standard Grant
Collaborative Research: Learning Microstructure- and Temperature-Dependencies of Grain Boundary Plastic Deformation Localization via Multi-modal In situ Characterization
合作研究:通过多模态原位表征学习晶界塑性变形局部化的微观结构和温度依赖性
  • 批准号:
    2234892
  • 财政年份:
    2023
  • 资助金额:
    $ 20.14万
  • 项目类别:
    Continuing Grant
Collaborative Research: A global census of submesoscale energetics using in-situ drifter observations and a high resolution ocean model
合作研究:利用原位漂流者观测和高分辨率海洋模型进行全球亚尺度能量普查
  • 批准号:
    2242110
  • 财政年份:
    2023
  • 资助金额:
    $ 20.14万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了