FRG: Collaborative Research: Wall-crossings in Geometry and Physics

FRG:合作研究:几何和物理的跨越

基本信息

  • 批准号:
    1265196
  • 负责人:
  • 金额:
    $ 11.26万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-07-01 至 2016-06-30
  • 项目状态:
    已结题

项目摘要

This project will investigate wall-crossing formulas for a wide class of invariants which appear in a priori different situations in mathematics and physics. Mathematically, those invariants are typically described as virtual Euler characteristics of some moduli spaces. The wall-crossing phenomenon is related to the presence of real codimension one "walls" in the space of parameters, where the invariants jump. In the case of Donaldson-Thomas invariants, the walls live in the moduli space of Bridgeland stability conditions on the ppropriate Calabi-Yau categories. Similar walls also occur in the theory of representations of quivers and cluster algebras. In mirror symmetry, walls correspond to jumps in the number of pseudo-holomorphic discs bounded by the torus fibers of an SYZ Lagrangian fibration. In supersymmetric gauge theories in physics, the number of BPS states jumps across "walls of marginal stability". The Kontsevich-Soibelman wall-crossing formulas for Donaldson-Thomas invariants thus occur in the physics literature on topics such as moduli spaces of vector ultiplets of 4-dimensional supersymmetric theories and supersymmetric black holes. Since these various wall-crossing formulas look so similar, one can ask for a common formalism. The aim of the FRG is to study the underlying "wall-crossing structures" and demonstrate hat the above-mentioned similarities are not coincidental, but rather reflect a deep underlying theory.It is a frequently encountered situation in mathematics and physics that numerical quantities which in principle depend on various parameters actually are constant for general parameter values (they are "invariants"), but jump along certain "walls" in the parameter space. Wall-crossing formulas describe these "jumps" quantitatively. The subject of wall-crossing has recently become a very active one due to its relevance to a number of different areas of mathematics and physics. The aim of this project is to develop the concept of "wall-crossing structure" rigorously and apply it to problems both old and new in which wall-crossing formulas appear. The results arising from this project will be in demand by both the mathematics and physics communities. The FRG will also build a research community around this coordinated effort, involving a mix of junior and senior researchers, training opportunities for graduate students, and the rganization of several workshops.
这个项目将研究在数学和物理的先验不同情况下出现的一类不变量的过墙公式。数学上,这些不变量通常被描述为一些模空间的虚欧拉特征。穿越墙现象与参数空间中存在实余维一的“墙”有关,其中不变量跳跃。在Donaldson-Thomas不变量的情况下,墙体存在于适当Calabi-Yau范畴上的Bridgeland稳定条件的模空间中。类似的壁也出现在颤振和簇代数的表示理论中。在镜像对称中,壁对应于以SYZ拉格朗日纤维环面纤维为界的伪全纯圆盘数量的跳跃。在物理学的超对称规范理论中,BPS状态的数量跨越了“边缘稳定之墙”。因此,Donaldson-Thomas不变量的kontsevic - soibelman过壁公式出现在诸如四维超对称理论和超对称黑洞的矢量多重子的模空间等物理文献中。由于这些不同的过墙公式看起来如此相似,人们可以要求一个共同的形式主义。FRG的目的是研究潜在的“跨墙结构”,并证明上述相似性不是巧合,而是反映了一个深刻的潜在理论。这是数学和物理中经常遇到的情况,原则上依赖于各种参数的数值对于一般参数值实际上是恒定的(它们是“不变量”),但在参数空间中沿着某些“墙”跳跃。跨墙公式定量地描述了这些“跳跃”。由于它与数学和物理的许多不同领域的相关性,跨越墙的主题最近成为一个非常活跃的主题。该项目的目的是严格发展“过墙结构”的概念,并将其应用于出现过墙公式的新旧问题。这个项目产生的结果将受到数学界和物理界的需求。FRG还将围绕这一协调努力建立一个研究社区,包括初级和高级研究人员,为研究生提供培训机会,以及组织几个讲习班。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Paul Seidel其他文献

Gamification of Science
科学游戏化
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Paul Seidel;J. Seifert;Alf Perschk
  • 通讯作者:
    Alf Perschk
Effect of Photodoping on the Fiske Resonances of YBa2Cu3Ox Grain Boundary Josephson Junctions
光电掺杂对YBa2Cu3Ox晶界约瑟夫森结费斯克共振的影响
  • DOI:
    10.1023/a:1022671615180
  • 发表时间:
    1998
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Medici;J. Elly;M. Razani;A. Gilabert;F. Schmidl;Paul Seidel;Axel Hoffmann;I. Schuller
  • 通讯作者:
    I. Schuller
Abbreviated terminology of oligosaccharide chains. Recommendations 1980.
寡糖链的缩写术语。
Characterization of energy barrier and particle size distribution of lyophilized ferrofluids by magnetic relaxation measurements
  • DOI:
    10.1016/j.jmmm.2006.10.1187
  • 发表时间:
    2007-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Frank Schmidl;Peter Weber;Torsten Koettig;Markus Büttner;Stefan Prass;Christoph Becker;Michael Mans;Jochen Heinrich;Michael Röder;Kerstin Wagner;Dimitr V. Berkov;Peter Görnert;Gunnar Glöckl;Werner Weitschies;Paul Seidel
  • 通讯作者:
    Paul Seidel
Effects of self-assembled gold nanoparticles on YBa2Cu3O7−δ thin films and devices
自组装金纳米颗粒对 YBa2Cu3O7−δ 薄膜和器件的影响
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    P. Michalowski;C. Katzer;F. Schmidl;Paul Seidel
  • 通讯作者:
    Paul Seidel

Paul Seidel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Paul Seidel', 18)}}的其他基金

Lefschetz Fibrations, Their Noncommutative Counterparts, and Formal Groups
Lefschetz 纤维、它们的非交换对应物以及形式群
  • 批准号:
    1904997
  • 财政年份:
    2019
  • 资助金额:
    $ 11.26万
  • 项目类别:
    Continuing Grant
Symplectic Geometry Workshop at the Isaac Newton Institute
艾萨克·牛顿研究所辛几何研讨会
  • 批准号:
    1727545
  • 财政年份:
    2017
  • 资助金额:
    $ 11.26万
  • 项目类别:
    Standard Grant
Lefschetz Fibrations, Mapping Tori, and Dynamics on Moduli Spaces of Objects
物体模空间上的 Lefschetz 纤维、映射环面和动力学
  • 批准号:
    1500954
  • 财政年份:
    2015
  • 资助金额:
    $ 11.26万
  • 项目类别:
    Continuing Grant
Cohomological methods in symplectic topology
辛拓扑中的上同调方法
  • 批准号:
    1005288
  • 财政年份:
    2010
  • 资助金额:
    $ 11.26万
  • 项目类别:
    Continuing Grant
FRG Collaborative Research: Homological Mirror Symmetry and its applications
FRG合作研究:同调镜像对称及其应用
  • 批准号:
    0652620
  • 财政年份:
    2007
  • 资助金额:
    $ 11.26万
  • 项目类别:
    Standard Grant
Fukaya Categories and Applications
深谷类别和应用
  • 批准号:
    0405516
  • 财政年份:
    2004
  • 资助金额:
    $ 11.26万
  • 项目类别:
    Standard Grant

相似海外基金

FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
  • 批准号:
    2244978
  • 财政年份:
    2023
  • 资助金额:
    $ 11.26万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245017
  • 财政年份:
    2023
  • 资助金额:
    $ 11.26万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245111
  • 财政年份:
    2023
  • 资助金额:
    $ 11.26万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245077
  • 财政年份:
    2023
  • 资助金额:
    $ 11.26万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2244879
  • 财政年份:
    2023
  • 资助金额:
    $ 11.26万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
  • 批准号:
    2245171
  • 财政年份:
    2023
  • 资助金额:
    $ 11.26万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2403764
  • 财政年份:
    2023
  • 资助金额:
    $ 11.26万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245021
  • 财政年份:
    2023
  • 资助金额:
    $ 11.26万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245097
  • 财政年份:
    2023
  • 资助金额:
    $ 11.26万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245147
  • 财政年份:
    2023
  • 资助金额:
    $ 11.26万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了