Lefschetz Fibrations, Mapping Tori, and Dynamics on Moduli Spaces of Objects

物体模空间上的 Lefschetz 纤维、映射环面和动力学

基本信息

  • 批准号:
    1500954
  • 负责人:
  • 金额:
    $ 31.24万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-07-01 至 2018-08-31
  • 项目状态:
    已结题

项目摘要

Dynamical systems (mathematical models of systems changing in time) describe many processes that affect us, and have given rise to some of the hardest questions in science, such as the multi-body problem in celestial mechanics. The first part of this project aims to explore an entirely new kind of dynamics, in which the states of the system (such as positions of particles) move around in time, without a global motion of the entire system. This seems paradoxical, and indeed one expects it to happen mostly in situations that are far from applications. Nevertheless, it has been shown that the phenomenon is mathematically possible, and because dynamical systems thinking provides such a powerful intuition, it makes sense to want to stretch its limits as far as possible. Any evidence of additional complexity in classical mechanical systems, even if it directly affects only a few cases, ultimately changes how we think of the complexity of such systems in general. The second part of this project deals with a phenomenon in mathematics which arises from its current close exchange of ideas with string theory: namely, the appearance of complicated explicit functions (typically, of one variable). From the viewpoint of topology, which is more qualitative, one hopes to minimize the amount of information that needs to be encoded inside such functions. For instance, if the functions themselves solve a differential equation, they can be recovered from a finite amount of information. String theory has been very effective in providing such a characterization, but this project aims (in a special case) for a more direct and simpler description. It should be viewed as an exercise in "noncommutative geometry", which is the mathematicians' way to prepare ourselves for thinking beyond conventional notions of space (which is one of the big challenges in contemporary mathematics and physics).Symplectic manifolds have a rich internal structure. This can be approached from a variational viewpoint (capacities, Hofer norms, spectral invariants), or from string theory and mirror symmetry. Nevertheless, the basic known invariants are a collection of numbers, or homology classes (Gromov-Witten invariants). There is information beyond that (Lagrangian submanifolds, Fukaya categories), but it is not directly amenable to being used as a classification tool. The project intends to attack this situation by looking at dynamical systems acting on the Fukaya category. The idea is start with geometric considerations such as flux, and export them to other situations. The approach is designed to be applied to a specific class of symplectic manifolds, related to mapping tori. The other major topic is a way of computing Fukaya categories, using Lefschetz pencils. While there is a body of previous work in this direction, it is restricted to the exact (or monotone) situation, and does not address the challenge of understanding the infinite series that arise in the Calabi-Yau case. The PI's aim is to describe those series in a more direct way than is provided by the standard framework of mirror symmetry (Gauss-Manin connections, mirror maps); this description would then also be more general, since it is ultimately independent of mirror symmetry considerations.
动力系统(系统随时间变化的数学模型)描述了许多影响我们的过程,并引发了一些科学上最困难的问题,例如天体力学中的多体问题。该项目的第一部分旨在探索一种全新的动力学,其中系统的状态(如粒子的位置)在时间上移动,而整个系统没有全局运动。这似乎是自相矛盾的,实际上,人们预计它主要发生在远离应用的情况下。尽管如此,已经证明这种现象在数学上是可能的,而且因为动力系统思维提供了如此强大的直觉,所以尽可能地扩展其极限是有意义的。任何关于经典力学系统中额外复杂性的证据,即使它只直接影响少数情况,最终也会改变我们对这类系统复杂性的一般看法。这个项目的第二部分涉及数学中的一个现象,它产生于当前与弦理论的密切思想交流:即复杂的显式函数(通常是一个变量)的出现。从拓扑的角度来看,这是更定性的,人们希望最大限度地减少需要在这样的函数中编码的信息量。例如,如果函数本身解决了微分方程,则可以从有限的信息量中恢复它们。弦论在提供这样的表征方面非常有效,但这个项目的目标(在特殊情况下)是更直接和更简单的描述。它应该被看作是“非对易几何”的一个练习,这是数学家们为超越传统的空间概念(这是当代数学和物理学中的一个巨大挑战)而进行思考的一种方式。辛流形有着丰富的内部结构。这可以从变分的观点(容量、霍费尔范数、谱不变量),或者从弦理论和镜像对称来处理。然而,基本的已知不变量是数的集合,或同调类(Gromov-Witten不变量)。还有更多的信息(拉格朗日子流形,福谷范畴),但它不能直接用作分类工具。 该项目打算通过研究作用于福谷范畴的动力系统来解决这种情况。我们的想法是从几何考虑开始,如通量,并将其导出到其他情况。该方法的目的是应用到一个特定的类辛流形,映射环面。另一个主要的主题是一种计算福谷类别的方法,使用莱夫谢茨铅笔。虽然有一个机构以前的工作在这个方向上,它被限制到确切的(或单调)的情况下,并没有解决的挑战,理解无穷级数出现在卡-丘的情况。PI的目标是以比镜像对称的标准框架(高斯-马宁连接,镜像映射)更直接的方式描述这些序列;这种描述也会更一般,因为它最终独立于镜像对称的考虑。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fukaya $A_\infty$-structures associated to Lefschetz fibrations. III
Fukaya $A_infty$-与 Lefschetz 纤维相关的结构。
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Paul Seidel其他文献

Gamification of Science
科学游戏化
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Paul Seidel;J. Seifert;Alf Perschk
  • 通讯作者:
    Alf Perschk
Effect of Photodoping on the Fiske Resonances of YBa2Cu3Ox Grain Boundary Josephson Junctions
光电掺杂对YBa2Cu3Ox晶界约瑟夫森结费斯克共振的影响
  • DOI:
    10.1023/a:1022671615180
  • 发表时间:
    1998
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Medici;J. Elly;M. Razani;A. Gilabert;F. Schmidl;Paul Seidel;Axel Hoffmann;I. Schuller
  • 通讯作者:
    I. Schuller
Abbreviated terminology of oligosaccharide chains. Recommendations 1980.
寡糖链的缩写术语。
Characterization of energy barrier and particle size distribution of lyophilized ferrofluids by magnetic relaxation measurements
  • DOI:
    10.1016/j.jmmm.2006.10.1187
  • 发表时间:
    2007-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Frank Schmidl;Peter Weber;Torsten Koettig;Markus Büttner;Stefan Prass;Christoph Becker;Michael Mans;Jochen Heinrich;Michael Röder;Kerstin Wagner;Dimitr V. Berkov;Peter Görnert;Gunnar Glöckl;Werner Weitschies;Paul Seidel
  • 通讯作者:
    Paul Seidel
Effects of self-assembled gold nanoparticles on YBa2Cu3O7−δ thin films and devices
自组装金纳米颗粒对 YBa2Cu3O7−δ 薄膜和器件的影响
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    P. Michalowski;C. Katzer;F. Schmidl;Paul Seidel
  • 通讯作者:
    Paul Seidel

Paul Seidel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Paul Seidel', 18)}}的其他基金

Lefschetz Fibrations, Their Noncommutative Counterparts, and Formal Groups
Lefschetz 纤维、它们的非交换对应物以及形式群
  • 批准号:
    1904997
  • 财政年份:
    2019
  • 资助金额:
    $ 31.24万
  • 项目类别:
    Continuing Grant
Symplectic Geometry Workshop at the Isaac Newton Institute
艾萨克·牛顿研究所辛几何研讨会
  • 批准号:
    1727545
  • 财政年份:
    2017
  • 资助金额:
    $ 31.24万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Wall-crossings in Geometry and Physics
FRG:合作研究:几何和物理的跨越
  • 批准号:
    1265196
  • 财政年份:
    2013
  • 资助金额:
    $ 31.24万
  • 项目类别:
    Standard Grant
Cohomological methods in symplectic topology
辛拓扑中的上同调方法
  • 批准号:
    1005288
  • 财政年份:
    2010
  • 资助金额:
    $ 31.24万
  • 项目类别:
    Continuing Grant
FRG Collaborative Research: Homological Mirror Symmetry and its applications
FRG合作研究:同调镜像对称及其应用
  • 批准号:
    0652620
  • 财政年份:
    2007
  • 资助金额:
    $ 31.24万
  • 项目类别:
    Standard Grant
Fukaya Categories and Applications
深谷类别和应用
  • 批准号:
    0405516
  • 财政年份:
    2004
  • 资助金额:
    $ 31.24万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Compact Hyper-Kahler manifolds and Lagrangian fibrations
职业:紧凑超卡勒流形和拉格朗日纤维
  • 批准号:
    2144483
  • 财政年份:
    2022
  • 资助金额:
    $ 31.24万
  • 项目类别:
    Continuing Grant
Structure theorem for varieties of special type focusing on rational connected fibrations and its application to classification theory
关注有理连接纤维的特殊类型品种结构定理及其在分类理论中的应用
  • 批准号:
    21H00976
  • 财政年份:
    2021
  • 资助金额:
    $ 31.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Mirror Symmetry for Fibrations and Degenerations
纤维化和退化的镜像对称
  • 批准号:
    EP/V005545/1
  • 财政年份:
    2021
  • 资助金额:
    $ 31.24万
  • 项目类别:
    Research Grant
A study for some rational homotopical conditions on the classification spaces of fibrations
纤维分类空间的一些有理同伦条件的研究
  • 批准号:
    20K03591
  • 财政年份:
    2020
  • 资助金额:
    $ 31.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Affine space fibrations on affine algebraic varieties and unipotent group actions
仿射代数簇上的仿射空间纤维振动和单能群作用
  • 批准号:
    20K03570
  • 财政年份:
    2020
  • 资助金额:
    $ 31.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Symplectic Surfaces, Lefschetz Fibrations, and Arboreal Skeleta
辛曲面、莱夫谢茨纤维和树栖骨骼
  • 批准号:
    1904074
  • 财政年份:
    2019
  • 资助金额:
    $ 31.24万
  • 项目类别:
    Continuing Grant
Lefschetz Fibrations, Their Noncommutative Counterparts, and Formal Groups
Lefschetz 纤维、它们的非交换对应物以及形式群
  • 批准号:
    1904997
  • 财政年份:
    2019
  • 资助金额:
    $ 31.24万
  • 项目类别:
    Continuing Grant
Calabi-Yau Manifolds: Families, Fibrations, and Degenerations
卡拉比-丘流形:族、纤维化和退化
  • 批准号:
    2299824
  • 财政年份:
    2019
  • 资助金额:
    $ 31.24万
  • 项目类别:
    Studentship
Springer Theory for Symmetric Spaces, Real Groups, Hitchin Fibrations, and Geometric Langlands
对称空间、实群、希钦纤维和几何朗兰兹的施普林格理论
  • 批准号:
    2022303
  • 财政年份:
    2019
  • 资助金额:
    $ 31.24万
  • 项目类别:
    Standard Grant
Hyper-Kahler Geometry via Lagrangian Fibrations and Symplectic Resolutions
通过拉格朗日纤维和辛分辨率的超卡勒几何
  • 批准号:
    1949812
  • 财政年份:
    2019
  • 资助金额:
    $ 31.24万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了