Lefschetz Fibrations, Their Noncommutative Counterparts, and Formal Groups

Lefschetz 纤维、它们的非交换对应物以及形式群

基本信息

  • 批准号:
    1904997
  • 负责人:
  • 金额:
    $ 31.19万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-07-01 至 2022-06-30
  • 项目状态:
    已结题

项目摘要

The goal of this project is to integrate recent insights, originating from theoretical physics, into classical areas of geometry. One can consider these purely mathematical questions as a "theoretical laboratory", which allows one to quickly explore the structure of cutting-edge ideas, abstracting away the full complexity of their physical origin. Besides the expected scientific benefit, the project contains specific parts designed for graduate and undergraduate research. Undergraduate research is an increasingly important part of the training of next-generation scientists and mathematicians. A particular effort has been made in this project to find issues of current relevance which allow students to take charge, under suitable mentorship.In Kontsevich's formulation of the string theory notion of mirror symmetry, this becomes a relation between symplectic geometry and algebraic geometry, formulated in a common algebraic language of noncommutative geometry. The project intends to further develop noncommutative geometry thinking in symplectic geometry. This is useful as an organizing principle for the information arising from pseudo-holomorphic curve methods. In the framework of the project, it will lead to new methods for understanding and computing that information. One key question under consideration is the dependence of categorical structures on the Novikov parameter. Mirror symmetry also has an arithmetic aspect. That motivates another part of the project, which is to bring structures common in number theory, such as formal groups, to bear on symplectic geometry.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个项目的目标是将最近的见解,从理论物理学,到几何的经典领域。人们可以把这些纯粹的数学问题看作是一个“理论实验室”,它允许人们快速探索前沿思想的结构,抽象出它们物理起源的全部复杂性。除了预期的科学效益外,该项目还包含为研究生和本科生研究设计的具体部分。本科研究是培养下一代科学家和数学家的一个越来越重要的组成部分。 在这个项目中,我们特别努力寻找与当前相关的问题,让学生在适当的指导下掌握主动权。在孔采维奇对弦论镜像对称概念的表述中,这成为辛几何和代数几何之间的关系,用非对易几何的通用代数语言表述。该项目旨在进一步发展辛几何中的非对易几何思想。这是有用的组织原则所产生的信息从伪全纯曲线方法。在该项目的框架内,它将导致理解和计算这些信息的新方法。一个关键的问题正在考虑的是依赖的诺维科夫参数的范畴结构。镜像对称也有一个算术方面。这激发了该项目的另一部分,即将数论中常见的结构(如形式群)应用于辛几何。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Covariant constancy of quantum Steenrold operations
量子 Steenrold 运算的协变常数
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Paul Seidel其他文献

Gamification of Science
科学游戏化
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Paul Seidel;J. Seifert;Alf Perschk
  • 通讯作者:
    Alf Perschk
Effect of Photodoping on the Fiske Resonances of YBa2Cu3Ox Grain Boundary Josephson Junctions
光电掺杂对YBa2Cu3Ox晶界约瑟夫森结费斯克共振的影响
  • DOI:
    10.1023/a:1022671615180
  • 发表时间:
    1998
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Medici;J. Elly;M. Razani;A. Gilabert;F. Schmidl;Paul Seidel;Axel Hoffmann;I. Schuller
  • 通讯作者:
    I. Schuller
Abbreviated terminology of oligosaccharide chains. Recommendations 1980.
寡糖链的缩写术语。
Characterization of energy barrier and particle size distribution of lyophilized ferrofluids by magnetic relaxation measurements
  • DOI:
    10.1016/j.jmmm.2006.10.1187
  • 发表时间:
    2007-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Frank Schmidl;Peter Weber;Torsten Koettig;Markus Büttner;Stefan Prass;Christoph Becker;Michael Mans;Jochen Heinrich;Michael Röder;Kerstin Wagner;Dimitr V. Berkov;Peter Görnert;Gunnar Glöckl;Werner Weitschies;Paul Seidel
  • 通讯作者:
    Paul Seidel
Effects of self-assembled gold nanoparticles on YBa2Cu3O7−δ thin films and devices
自组装金纳米颗粒对 YBa2Cu3O7−δ 薄膜和器件的影响
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    P. Michalowski;C. Katzer;F. Schmidl;Paul Seidel
  • 通讯作者:
    Paul Seidel

Paul Seidel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Paul Seidel', 18)}}的其他基金

Symplectic Geometry Workshop at the Isaac Newton Institute
艾萨克·牛顿研究所辛几何研讨会
  • 批准号:
    1727545
  • 财政年份:
    2017
  • 资助金额:
    $ 31.19万
  • 项目类别:
    Standard Grant
Lefschetz Fibrations, Mapping Tori, and Dynamics on Moduli Spaces of Objects
物体模空间上的 Lefschetz 纤维、映射环面和动力学
  • 批准号:
    1500954
  • 财政年份:
    2015
  • 资助金额:
    $ 31.19万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Wall-crossings in Geometry and Physics
FRG:合作研究:几何和物理的跨越
  • 批准号:
    1265196
  • 财政年份:
    2013
  • 资助金额:
    $ 31.19万
  • 项目类别:
    Standard Grant
Cohomological methods in symplectic topology
辛拓扑中的上同调方法
  • 批准号:
    1005288
  • 财政年份:
    2010
  • 资助金额:
    $ 31.19万
  • 项目类别:
    Continuing Grant
FRG Collaborative Research: Homological Mirror Symmetry and its applications
FRG合作研究:同调镜像对称及其应用
  • 批准号:
    0652620
  • 财政年份:
    2007
  • 资助金额:
    $ 31.19万
  • 项目类别:
    Standard Grant
Fukaya Categories and Applications
深谷类别和应用
  • 批准号:
    0405516
  • 财政年份:
    2004
  • 资助金额:
    $ 31.19万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Compact Hyper-Kahler manifolds and Lagrangian fibrations
职业:紧凑超卡勒流形和拉格朗日纤维
  • 批准号:
    2144483
  • 财政年份:
    2022
  • 资助金额:
    $ 31.19万
  • 项目类别:
    Continuing Grant
Structure theorem for varieties of special type focusing on rational connected fibrations and its application to classification theory
关注有理连接纤维的特殊类型品种结构定理及其在分类理论中的应用
  • 批准号:
    21H00976
  • 财政年份:
    2021
  • 资助金额:
    $ 31.19万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Mirror Symmetry for Fibrations and Degenerations
纤维化和退化的镜像对称
  • 批准号:
    EP/V005545/1
  • 财政年份:
    2021
  • 资助金额:
    $ 31.19万
  • 项目类别:
    Research Grant
A study for some rational homotopical conditions on the classification spaces of fibrations
纤维分类空间的一些有理同伦条件的研究
  • 批准号:
    20K03591
  • 财政年份:
    2020
  • 资助金额:
    $ 31.19万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Affine space fibrations on affine algebraic varieties and unipotent group actions
仿射代数簇上的仿射空间纤维振动和单能群作用
  • 批准号:
    20K03570
  • 财政年份:
    2020
  • 资助金额:
    $ 31.19万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Symplectic Surfaces, Lefschetz Fibrations, and Arboreal Skeleta
辛曲面、莱夫谢茨纤维和树栖骨骼
  • 批准号:
    1904074
  • 财政年份:
    2019
  • 资助金额:
    $ 31.19万
  • 项目类别:
    Continuing Grant
Calabi-Yau Manifolds: Families, Fibrations, and Degenerations
卡拉比-丘流形:族、纤维化和退化
  • 批准号:
    2299824
  • 财政年份:
    2019
  • 资助金额:
    $ 31.19万
  • 项目类别:
    Studentship
Hyper-Kahler Geometry via Lagrangian Fibrations and Symplectic Resolutions
通过拉格朗日纤维和辛分辨率的超卡勒几何
  • 批准号:
    1949812
  • 财政年份:
    2019
  • 资助金额:
    $ 31.19万
  • 项目类别:
    Standard Grant
Springer Theory for Symmetric Spaces, Real Groups, Hitchin Fibrations, and Geometric Langlands
对称空间、实群、希钦纤维和几何朗兰兹的施普林格理论
  • 批准号:
    2022303
  • 财政年份:
    2019
  • 资助金额:
    $ 31.19万
  • 项目类别:
    Standard Grant
Hyper-Kahler Geometry via Lagrangian Fibrations and Symplectic Resolutions
通过拉格朗日纤维和辛分辨率的超卡勒几何
  • 批准号:
    1801818
  • 财政年份:
    2018
  • 资助金额:
    $ 31.19万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了