FRG: Collaborative Research: Lifting Problems and Galois Theory

FRG:协作研究:提升问题和伽罗瓦理论

基本信息

  • 批准号:
    1265290
  • 负责人:
  • 金额:
    $ 116万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-07-01 至 2017-06-30
  • 项目状态:
    已结题

项目摘要

The object of this proposal is to pursue new approaches to some fundamental problems in Galois theory, following recent breakthroughs in this subject. The focus of research will be on lifting finite (possibly ramified) Galois covers of smooth projective curves over a commutative ring and on finding small rings of definition for such lifts. These problems pertain to the classical Inverse Galois Problem as well as to the question of finding the relations between etale fundamental groups of various kinds.This proposal deals with fundamental questions about the solutions of algebraic equations. The study of the symmetries of such equations has been the motivation for the development of much of abstract algebra. Advances in abstract algebra have been essential to the development of modern technology. Some particular examples of applications of abstract algebra include the compression and transmission of data, cryptography, search algorithms and solving optimization problems in the physical sciences, engineering and economics.
这一建议的目的是追求新的方法来解决伽罗瓦理论中的一些基本问题,在这个问题上最近的突破。 研究的重点将是提升有限(可能分歧)伽罗瓦覆盖光滑的射影曲线在一个交换环,并找到小环的定义,这样的升降机。 这些问题既涉及到经典的Galois逆问题,也涉及到寻找各种基本群之间的关系问题,这个建议涉及到关于代数方程解的基本问题。 对此类方程对称性的研究一直是大部分抽象代数发展的动力。 抽象代数的进步对现代技术的发展至关重要。 抽象代数应用的一些具体例子包括数据的压缩和传输,密码学,搜索算法和解决物理科学,工程和经济学中的优化问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ted Chinburg其他文献

Cup products on curves over finite fields
有限域曲线上的杯积
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Frauke M. Bleher;Ted Chinburg
  • 通讯作者:
    Ted Chinburg
On representations of math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg" class="math"mrowmi mathvariant="normal"Gal/mi/mrowmo stretchy="false"(/momover accent="true"mrowmi mathvariant="double-struck"Q/mi/mrowmo‾/mo/movermo stretchy="false"//momi mathvariant="double-struck"Q/mimo stretchy="false")/mo/math, math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si2.svg" class="math"mover accent="true"mrowmiG/mimiT/mi/mrowmrowmoˆ/mo/mrow/mover/math and math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si3.svg" class="math"mrowmi mathvariant="normal"Aut/mi/mrowmo stretchy="false"(/momsubmrowmover accent="true"mrowmiF/mi/mrowmrowmoˆ/mo/mrow/mover/mrowmrowmn2/mn/mrow/msubmo stretchy="false")/mo/math
  • DOI:
    10.1016/j.jalgebra.2021.06.005
  • 发表时间:
    2022-10-01
  • 期刊:
  • 影响因子:
    0.800
  • 作者:
    Frauke M. Bleher;Ted Chinburg;Alexander Lubotzky
  • 通讯作者:
    Alexander Lubotzky
The geometry of finite dimensional algebras with vanishing radical square
  • DOI:
    10.1016/j.jalgebra.2014.11.010
  • 发表时间:
    2015-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    Frauke M. Bleher;Ted Chinburg;Birge Huisgen-Zimmermann
  • 通讯作者:
    Birge Huisgen-Zimmermann
Topological properties of Eschenburg spaces and 3-Sasakian manifolds
  • DOI:
    10.1007/s00208-007-0102-6
  • 发表时间:
    2007-04-19
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Ted Chinburg;Christine Escher;Wolfgang Ziller
  • 通讯作者:
    Wolfgang Ziller

Ted Chinburg的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ted Chinburg', 18)}}的其他基金

SaTC: CORE: Medium: Collaborative: An Algebraic Approach to Secure Multilinear Maps for Cryptography
SaTC:核心:媒介:协作:保护密码学多线性映射的代数方法
  • 批准号:
    1701785
  • 财政年份:
    2017
  • 资助金额:
    $ 116万
  • 项目类别:
    Standard Grant
TWC: Medium: CRYPTOGRAPHIC APPLICATIONS OF CAPACITY THEORY
TWC:媒介:容量理论的密码学应用
  • 批准号:
    1513671
  • 财政年份:
    2015
  • 资助金额:
    $ 116万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Chern classes in Iwasawa Theory
FRG:合作研究:岩泽理论中的陈省身课程
  • 批准号:
    1360767
  • 财政年份:
    2014
  • 资助金额:
    $ 116万
  • 项目类别:
    Continuing Grant
Euler Characteristics,Qquadratic Invariants, Arithmetic Groups and Lifting Problems
欧拉特性、Q二次不变量、算术群和提升问题
  • 批准号:
    1100355
  • 财政年份:
    2011
  • 资助金额:
    $ 116万
  • 项目类别:
    Standard Grant
Euler characteristics, length spectra, deformations and lifting problems
欧拉特征、长度谱、变形和提升问题
  • 批准号:
    0801030
  • 财政年份:
    2008
  • 资助金额:
    $ 116万
  • 项目类别:
    Standard Grant
Euler Characteristics and Lifting Problems in Arithmetic Geometry
算术几何中的欧拉特性和提升问题
  • 批准号:
    0500106
  • 财政年份:
    2005
  • 资助金额:
    $ 116万
  • 项目类别:
    Standard Grant
Collaborative Research: FRG: Class numbers, Hyperbolic Manifolds and Dynamics
合作研究:FRG:类数、双曲流形和动力学
  • 批准号:
    0139816
  • 财政年份:
    2002
  • 资助金额:
    $ 116万
  • 项目类别:
    Standard Grant
Galois Structure and Arithmetic Geometry
伽罗瓦结构与算术几何
  • 批准号:
    0070433
  • 财政年份:
    2000
  • 资助金额:
    $ 116万
  • 项目类别:
    Standard Grant
The Galois Structure of DeRham Cohomology and Motives
DeRham 上同调的伽罗瓦结构和动机
  • 批准号:
    9701411
  • 财政年份:
    1997
  • 资助金额:
    $ 116万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Galois Structures, Capacity Theory and Intersection Theory
数学科学:伽罗瓦结构、容量论和交集论
  • 批准号:
    9400748
  • 财政年份:
    1994
  • 资助金额:
    $ 116万
  • 项目类别:
    Continuing Grant

相似海外基金

FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
  • 批准号:
    2244978
  • 财政年份:
    2023
  • 资助金额:
    $ 116万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245017
  • 财政年份:
    2023
  • 资助金额:
    $ 116万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245111
  • 财政年份:
    2023
  • 资助金额:
    $ 116万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245077
  • 财政年份:
    2023
  • 资助金额:
    $ 116万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2244879
  • 财政年份:
    2023
  • 资助金额:
    $ 116万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
  • 批准号:
    2245171
  • 财政年份:
    2023
  • 资助金额:
    $ 116万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2403764
  • 财政年份:
    2023
  • 资助金额:
    $ 116万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245021
  • 财政年份:
    2023
  • 资助金额:
    $ 116万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245097
  • 财政年份:
    2023
  • 资助金额:
    $ 116万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245147
  • 财政年份:
    2023
  • 资助金额:
    $ 116万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了