Euler characteristics, length spectra, deformations and lifting problems
欧拉特征、长度谱、变形和提升问题
基本信息
- 批准号:0801030
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-07-01 至 2012-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project concerns arithmetic geometry, hyperbolic geometry, representation theory and number theory. The first goal is to prove Riemann Roch formulas for coherent and Weil-etale sheaves on which a finite group acts. Such formulas are relevant to conjectures about special values of L-series. A second goal is to study commensurability classes of arithmetic groups and their connection to the length spectra of arithmetic locally symmetric spaces. A third goal is to study deformations of complexes of modules for a profinite group. The focus will be on a conjecture that versal deformations arising from arithmetic geometry are representable by perfect complexes over the versal deformation ring. The last goal of the project is to study which finite group actions on curves in positive characteristic can be lifted to characteristic zero.The unifying theme of this project is the study of symmetries. Riemann Roch formulas quantify how symmetries of systems of equations are reflected in their solutions. One can use results of this kind to greatly constrain the Solutions. Symmetries enter into the famous problem of recognizing the shape of an object from how it reflects sound or radio waves. A variant of this problem will be studied which involves also using the lengths of certain paths on the object to try to recognize it. A basic problem in considering symmetries is to quantify how much information is needed to describe them. This problem will be investigated in the context of describing all ways to deform an object having a set of prescribed symmetries. Finally, obstructions will be studied to extending symmetries from a small object (a curve in positive characteristic) to a larger one (a curve in characteristic zero).
本课题涉及算术几何、双曲几何、表示论和数论。第一个目标是证明有有限群作用的相干束和Weil-etale束的黎曼洛克公式。这些公式与l级数的特殊值的猜想有关。第二个目标是研究算术群的可通约性类及其与算术局部对称空间的长度谱的联系。第三个目标是研究无限群的模复合体的变形。重点将放在一个猜想上,即由算术几何产生的通用变形可以用通用变形环上的完美复合体来表示。本课题的最后一个目标是研究正特征曲线上的有限群作用可以提升到特征零点。这个项目的统一主题是对对称性的研究。黎曼洛克公式量化了方程组的对称性如何反映在它们的解中。我们可以利用这类结果来极大地约束解。根据物体反射声音或无线电波的方式来识别物体的形状,这是一个著名的问题。我们将研究这个问题的一个变体,它也涉及到使用物体上某些路径的长度来尝试识别它。考虑对称性的一个基本问题是量化描述对称性需要多少信息。这个问题将在描述具有一组规定对称性的物体变形的所有方法的背景下进行研究。最后,将研究障碍物如何将对称从小物体(正特征曲线)扩展到大物体(特征为零的曲线)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ted Chinburg其他文献
Cup products on curves over finite fields
有限域曲线上的杯积
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Frauke M. Bleher;Ted Chinburg - 通讯作者:
Ted Chinburg
On representations of math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg" class="math"mrowmi mathvariant="normal"Gal/mi/mrowmo stretchy="false"(/momover accent="true"mrowmi mathvariant="double-struck"Q/mi/mrowmo‾/mo/movermo stretchy="false"//momi mathvariant="double-struck"Q/mimo stretchy="false")/mo/math, math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si2.svg" class="math"mover accent="true"mrowmiG/mimiT/mi/mrowmrowmoˆ/mo/mrow/mover/math and math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si3.svg" class="math"mrowmi mathvariant="normal"Aut/mi/mrowmo stretchy="false"(/momsubmrowmover accent="true"mrowmiF/mi/mrowmrowmoˆ/mo/mrow/mover/mrowmrowmn2/mn/mrow/msubmo stretchy="false")/mo/math
- DOI:
10.1016/j.jalgebra.2021.06.005 - 发表时间:
2022-10-01 - 期刊:
- 影响因子:0.800
- 作者:
Frauke M. Bleher;Ted Chinburg;Alexander Lubotzky - 通讯作者:
Alexander Lubotzky
The geometry of finite dimensional algebras with vanishing radical square
- DOI:
10.1016/j.jalgebra.2014.11.010 - 发表时间:
2015-03-01 - 期刊:
- 影响因子:
- 作者:
Frauke M. Bleher;Ted Chinburg;Birge Huisgen-Zimmermann - 通讯作者:
Birge Huisgen-Zimmermann
Topological properties of Eschenburg spaces and 3-Sasakian manifolds
- DOI:
10.1007/s00208-007-0102-6 - 发表时间:
2007-04-19 - 期刊:
- 影响因子:1.400
- 作者:
Ted Chinburg;Christine Escher;Wolfgang Ziller - 通讯作者:
Wolfgang Ziller
Ted Chinburg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ted Chinburg', 18)}}的其他基金
SaTC: CORE: Medium: Collaborative: An Algebraic Approach to Secure Multilinear Maps for Cryptography
SaTC:核心:媒介:协作:保护密码学多线性映射的代数方法
- 批准号:
1701785 - 财政年份:2017
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
TWC: Medium: CRYPTOGRAPHIC APPLICATIONS OF CAPACITY THEORY
TWC:媒介:容量理论的密码学应用
- 批准号:
1513671 - 财政年份:2015
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Chern classes in Iwasawa Theory
FRG:合作研究:岩泽理论中的陈省身课程
- 批准号:
1360767 - 财政年份:2014
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Lifting Problems and Galois Theory
FRG:协作研究:提升问题和伽罗瓦理论
- 批准号:
1265290 - 财政年份:2013
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Euler Characteristics,Qquadratic Invariants, Arithmetic Groups and Lifting Problems
欧拉特性、Q二次不变量、算术群和提升问题
- 批准号:
1100355 - 财政年份:2011
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Euler Characteristics and Lifting Problems in Arithmetic Geometry
算术几何中的欧拉特性和提升问题
- 批准号:
0500106 - 财政年份:2005
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: FRG: Class numbers, Hyperbolic Manifolds and Dynamics
合作研究:FRG:类数、双曲流形和动力学
- 批准号:
0139816 - 财政年份:2002
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Galois Structure and Arithmetic Geometry
伽罗瓦结构与算术几何
- 批准号:
0070433 - 财政年份:2000
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
The Galois Structure of DeRham Cohomology and Motives
DeRham 上同调的伽罗瓦结构和动机
- 批准号:
9701411 - 财政年份:1997
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Mathematical Sciences: Galois Structures, Capacity Theory and Intersection Theory
数学科学:伽罗瓦结构、容量论和交集论
- 批准号:
9400748 - 财政年份:1994
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
相似国自然基金
CuAgSe基热电材料的结构特性与构效关系研究
- 批准号:22375214
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
大型机械结构非线性特性的实验辨识和物理仿真
- 批准号:50405043
- 批准年份:2004
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Examining the Function of a Novel Protein in the Cardiac Junctional Membrane Complex
检查心脏连接膜复合体中新型蛋白质的功能
- 批准号:
10749672 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Mental Health and Occupational Functioning in Nurses: An investigation of anxiety sensitivity and factors affecting future use of an mHealth intervention
护士的心理健康和职业功能:焦虑敏感性和影响未来使用移动健康干预措施的因素的调查
- 批准号:
10826673 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Developing Real-world Understanding of Medical Music therapy using the Electronic Health Record (DRUMMER)
使用电子健康记录 (DRUMMER) 培养对医学音乐治疗的真实理解
- 批准号:
10748859 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Helping Doctors Doctor: Using AI to Automate Documentation and "De-Autonomate" Health Care
帮助医生医生:使用人工智能实现文档自动化和医疗保健“去自动化”
- 批准号:
10701364 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Origins and Benefits of Biologically Active Components in Human Milk
母乳中生物活性成分的来源和益处
- 批准号:
10683486 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Differences in Hospital Nursing Resources among Black-Serving Hospitals as a Driver of Patient Outcomes Disparities
黑人服务医院之间医院护理资源的差异是患者结果差异的驱动因素
- 批准号:
10633905 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Defining the molecular and radiologic phenotype of progressive RA-ILD
定义进行性 RA-ILD 的分子和放射学表型
- 批准号:
10634344 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Penn State TCORS: Tobacco Product Composition Effects on Toxicity and Addiction
宾夕法尼亚州立大学 TCORS:烟草产品成分对毒性和成瘾性的影响
- 批准号:
10665895 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Social Connectedness and Health among Gender Minority People of Color
性别少数有色人种的社会联系和健康
- 批准号:
10650066 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别: