AFFINE CRYSTALS: COMBINATORICS, ALGEBRA AND GEOMETRY

仿射晶体:组合学、代数和几何

基本信息

  • 批准号:
    1265555
  • 负责人:
  • 金额:
    $ 13.52万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-09-01 至 2016-06-30
  • 项目状态:
    已结题

项目摘要

The proposed research studies affine Kac-Moody algebras using Kashiwara's theory of crystals. A crystal here is a combinatorial object (a set along with some operations) associated to each highest weight representation of a symmetrizable Kac-Moody algebra. Kashiwara's construction makes heavy use of the associated quantized universal enveloping algebra, but the crystals themselves can often be realized by other means. Some such realizations are purely combinatorial, and others use non-trivial geometry. In finite type, one realization which has generated a lot of interest uses the Mirkovic-Vilonen (MV) polytopes developed by Anderson and by Kamnitzer. Along with his collaborators, the P.I. is currently developing a version of this combinatorics for symmetric affine types, using quiver varieties. Affine MV polytopes have been sought since the finite type polytopes first appeared, so their construction is itself an important development. The P.I. will investigate the connection between these new polytopes and various algebraic and geometric structures related to affine algebras. This work may also lead to a notion of MV polytope in all (not necessarily symmetric) affine types. The proposed research also considers ways of extracting other combinatorial realizations from the geometry of quiver varieties, and develops applications of crystal theory to Macdonald polynomials and Demazure characters.This proposal addresses important questions in the theory of affine algebras, and will be of interest to a number of people in that field. Affine algebras are important in mathematical physics, so there is potential for cross-disciplinary impact. The proposal will also fund undergraduate research projects, and more generally contribute to the training and developing of young mathematicians. There are several questions related to this research that can be studied in terms of explicit realizations of crystals. These are ideal for undergraduate research projects, as only a limited amount of background is required in order to approach the questions, yet they can provide an entry point into a rich representation-theoretic story. The proposal will also support student seminars which are designed both to train students in advanced subjects and to develop their skills as presenters. Finally, the P.I. will continue to work with programs such as math circles aimed at high school students.
本研究利用Kashiwara的晶体理论来研究仿射Kac-Moody代数。晶体在这里是一个组合对象(一个沿着一些操作的集合),与可对称化的Kac-Moody代数的每个最高权重表示相关联。Kashiwara的构造大量使用了相关的量子化通用包络代数,但晶体本身通常可以通过其他方式实现。一些这样的实现是纯粹的组合,和其他使用非平凡的几何。在有限类型中,一个产生了很多兴趣的实现使用了由安德森和卡姆尼策开发的Mirkovic-Vilonen(MV)多面体。沿着他的合作者私家侦探。目前正在开发一个版本的对称仿射类型的组合学,使用numerals品种。自从有限型多面体出现以来,人们一直在寻找仿射MV多面体,因此它们的构造本身就是一个重要的发展。私家侦探将研究这些新的多面体之间的联系和各种代数和几何结构有关的仿射代数。这项工作也可能导致MV多面体的概念,在所有(不一定是对称的)仿射类型。拟议的研究还考虑了从几何学中提取其他组合实现的方法,并将晶体理论应用于Macdonald多项式和Demazure characters.This proposal addresses important questions in the theory of affine algebras,and will be of interest to a number of people in that field.仿射代数在数学物理中很重要,因此有可能产生跨学科的影响。该提案还将资助本科生研究项目,更广泛地说,有助于年轻数学家的培训和发展。有几个问题与这项研究有关,可以在晶体的显式实现方面进行研究。这些都是理想的本科研究项目,因为只有有限的背景是为了解决问题所需的,但他们可以提供一个切入点到一个丰富的代表理论的故事。该提案还将支持学生研讨会,这些研讨会旨在培训学生学习高级科目,并培养他们作为演讲者的技能。最后私家侦探将继续开展针对高中生的数学圈等项目。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peter Tingley其他文献

Random Skew Plane Partitions with a Piecewise Periodic Back Wall
  • DOI:
    10.1007/s00023-011-0120-5
  • 发表时间:
    2011-06-28
  • 期刊:
  • 影响因子:
    1.300
  • 作者:
    Cedric Boutillier;Sevak Mkrtchyan;Nicolai Reshetikhin;Peter Tingley
  • 通讯作者:
    Peter Tingley
Ramsey Numbers for Trees of Small Maximum Degree
小最大度树的 Ramsey 数
  • DOI:
    10.1007/s004930200014
  • 发表时间:
    2002
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    P. Haxell;Tomasz Łuczak;Peter Tingley
  • 通讯作者:
    Peter Tingley

Peter Tingley的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Peter Tingley', 18)}}的其他基金

AFFINE CRYSTALS: COMBINATORICS, ALGEBRA AND GEOMETRY
仿射晶体:组合学、代数和几何
  • 批准号:
    1162385
  • 财政年份:
    2012
  • 资助金额:
    $ 13.52万
  • 项目类别:
    Standard Grant
PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    0902649
  • 财政年份:
    2009
  • 资助金额:
    $ 13.52万
  • 项目类别:
    Fellowship Award

相似海外基金

Big time crystals: a new paradigm in condensed matter
大时间晶体:凝聚态物质的新范例
  • 批准号:
    DP240101590
  • 财政年份:
    2024
  • 资助金额:
    $ 13.52万
  • 项目类别:
    Discovery Projects
Design and Analysis of Structure Preserving Discretizations to Simulate Pattern Formation in Liquid Crystals and Ferrofluids
模拟液晶和铁磁流体中图案形成的结构保持离散化的设计和分析
  • 批准号:
    2409989
  • 财政年份:
    2024
  • 资助金额:
    $ 13.52万
  • 项目类别:
    Standard Grant
"In-Crystallo" Solid-State Molecular Organometallic Chemistry of Methane, Ethane and Propane. Synthesis, Structures and Catalysis in Single-Crystals
甲烷、乙烷和丙烷的“晶体内”固态分子有机金属化学。
  • 批准号:
    EP/W015498/2
  • 财政年份:
    2024
  • 资助金额:
    $ 13.52万
  • 项目类别:
    Research Grant
Lubrication by Lamellar Liquid Crystals - An in-situ investigation of thin films with Brewster Angle microscopy technology
层状液晶润滑 - 使用布鲁斯特角显微镜技术对薄膜进行原位研究
  • 批准号:
    EP/Y023277/1
  • 财政年份:
    2024
  • 资助金额:
    $ 13.52万
  • 项目类别:
    Research Grant
Multi-Scale Magnonic Crystals and Fractional Schr?dinger Equation-Governed Dynamics
多尺度磁子晶体和分数阶薛定谔方程控制的动力学
  • 批准号:
    2420266
  • 财政年份:
    2024
  • 资助金额:
    $ 13.52万
  • 项目类别:
    Standard Grant
Unveiling magnetic structure of long-range ordered quasicrystals and approximant crystals via X-ray Resonant Magnetic Scattering method
通过X射线共振磁散射法揭示长程有序准晶和近似晶体的磁结构
  • 批准号:
    24K17016
  • 财政年份:
    2024
  • 资助金额:
    $ 13.52万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Achieving large polarization change induced by magnetic field in molecular crystals
在分子晶体中实现磁场引起的大极化变化
  • 批准号:
    24K17698
  • 财政年份:
    2024
  • 资助金额:
    $ 13.52万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Electronic properties of organic semiconductor crystals at finite temperature from first-principles
从第一原理研究有机半导体晶体在有限温度下的电子特性
  • 批准号:
    23K04667
  • 财政年份:
    2023
  • 资助金额:
    $ 13.52万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Hierarchically Ordered Structures by Frustration Design of Liquid Crystals and Its Functional Exploration
液晶的分层有序结构及其功能探索
  • 批准号:
    23H02038
  • 财政年份:
    2023
  • 资助金额:
    $ 13.52万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Ultra-short Pulsed Laser Welding of Crystals
晶体的超短脉冲激光焊接
  • 批准号:
    2894202
  • 财政年份:
    2023
  • 资助金额:
    $ 13.52万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了