Uncertainty Propagation Methods for Networked Complex Systems

网络复杂系统的不确定性传播方法

基本信息

  • 批准号:
    1301235
  • 负责人:
  • 金额:
    $ 41.06万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-08-01 至 2018-07-31
  • 项目状态:
    已结题

项目摘要

The objective of this research is development of a novel class of uncertainty quantification methods for networked complex systems. The fundamental and challenging uncertainty quantification problems remain unsolved, in particular combating the curse of dimensionality and solving uncertainty quantification problems related to large and multi-scale dynamic networks underlying modern day complex systems. The main challenge that lies at the core of analyzing and synthesizing the dynamic networks at the crux of modern day complex systems is: How do a collection of dynamical systems coupled through a dense wiring topology behave as a unit in the presence of uncertainty? The UB-SUNY team is developing of a suite of novel computational uncertainty quantification methods to tackle the main challenge and to enable accelerated design and deployment of complex systems.This project will have far reaching impacts on research and the practice of complex system design and management across a wide variety of industries. Development of these methods will have an immediate impact on the community at large with beneficiaries ranging from ordinary users to system design teams in industrial, and academic environments. Our research is being integrated into the education of graduate, undergraduate and high-school students including under-represented minorities in science and engineering fields. These educational activities involve: 1) developing workshops and short course for researchers and professionals working in the area of systems engineering and uncertainty quantification, 2) developing seminar courses for undergraduates, and 3) incorporation of research results in graduate/undergraduate courses.
这项研究的目的是开发一类新型的网络复杂系统的不确定性量化方法。基本且具有挑战性的不确定性量化问题仍未解决,特别是对抗维度灾难和解决与现代复杂系统底层的大型和多尺度动态网络相关的不确定性量化问题。分析和综合现代复杂系统关键动态网络的核心挑战是:通过密集布线拓扑耦合的动态系统集合在存在不确定性的情况下如何作为一个单元表现? UB-SUNY 团队正在开发一套新颖的计算不确定性量化方法,以应对主要挑战并加速复杂系统的设计和部署。该项目将对各行业的复杂系统设计和管理的研究和实践产生深远的影响。这些方法的开发将对整个社区产生直接影响,受益者范围从普通用户到工业和学术环境中的系统设计团队。我们的研究正在融入研究生、本科生和高中生的教育,包括科学和工程领域代表性不足的少数群体。这些教育活动包括:1)为系统工程和不确定性量化领域的研究人员和专业人员开发讲习班和短期课程,2)为本科生开发研讨会课程,3)将研究成果纳入研究生/本科生课程。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rahul Rai其他文献

Dense object detection based canopy characteristics encoding for precise spraying in peach orchards
基于密集目标检测的冠层特征编码用于桃园精准喷雾
Hybrid physics-infused 1D-CNN based deep learning framework for diesel engine fault diagnostics
基于混合物理的 1D-CNN 柴油发动机故障诊断深度学习框架
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Singh;Raj Pradip Khawale;Subhashis Hazarika;Ankur Bhatt;B. Gainey;Benjamin Lawler;Rahul Rai
  • 通讯作者:
    Rahul Rai
MPTP-Net: melt pool temperature profile network for thermal field modeling in beam shaping of laser powder bed fusion
  • DOI:
    10.1007/s10845-024-02449-5
  • 发表时间:
    2024-07-06
  • 期刊:
  • 影响因子:
    7.400
  • 作者:
    Shengli Xu;Rahul Rai;Robert D. Moore;Giovanni Orlandi;Fadi Abdeljawad
  • 通讯作者:
    Fadi Abdeljawad
Efficacy of Inclisiran in Patients Having Familial Hypercholesterolemia: Heterozygous Compared to Homozygous Trait, a Systematic Review and Meta-analysis
Inclisiran 对家族性高胆固醇血症患者的疗效:杂合子与纯合子特征的比较、系统评价和荟萃分析
  • DOI:
    10.1097/hpc.0000000000000353
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rahul Rai;Payal Devi;Kapeel Kumar;Kainat Naeem;Hanesh Kumar;Kajal Kumari;Anish Kumar;Aman Kumar;Aqeel Muhammad;Muhammad Sohaib Khan;Ghulam Qadir;Shaheryar Ali;Mahveer Maheshwari;Mohammad Jawwad
  • 通讯作者:
    Mohammad Jawwad
FuzzyGAN: Fuzzy generative adversarial networks for regression tasks
模糊生成对抗网络:用于回归任务的模糊生成对抗网络
  • DOI:
    10.1016/j.neucom.2023.01.015
  • 发表时间:
    2023-03-07
  • 期刊:
  • 影响因子:
    6.500
  • 作者:
    Ryan Nguyen;Shubhendu Kumar Singh;Rahul Rai
  • 通讯作者:
    Rahul Rai

Rahul Rai的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rahul Rai', 18)}}的其他基金

Collaborative Research: Knowledge Representation and Design for Managing Product Obsolescence
协作研究:管理产品过时的知识表示和设计
  • 批准号:
    1215650
  • 财政年份:
    2011
  • 资助金额:
    $ 41.06万
  • 项目类别:
    Standard Grant
Collaborative Research: Knowledge Representation and Design for Managing Product Obsolescence
协作研究:管理产品过时的知识表示和设计
  • 批准号:
    0928837
  • 财政年份:
    2009
  • 资助金额:
    $ 41.06万
  • 项目类别:
    Standard Grant

相似海外基金

Computational and machine learning methods for model reduction, uncertainty propagation, and parameter identification in fluid and solid mechanics
流体和固体力学中模型简化、不确定性传播和参数识别的计算和机器学习方法
  • 批准号:
    RGPIN-2021-02693
  • 财政年份:
    2022
  • 资助金额:
    $ 41.06万
  • 项目类别:
    Discovery Grants Program - Individual
Construction of design methods using characteristics of bi-directional beam propagation method for optical circuit components
利用双向光束传播方法的特点构建光路元件设计方法
  • 批准号:
    22K14296
  • 财政年份:
    2022
  • 资助金额:
    $ 41.06万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Fracture propagation in glaciers using discontinuous Galerkin finite element methods
使用不连续伽辽金有限元方法研究冰川中的裂缝扩展
  • 批准号:
    2729638
  • 财政年份:
    2022
  • 资助金额:
    $ 41.06万
  • 项目类别:
    Studentship
Generalizable machine learning methods for wireless propagation modeling
用于无线传播建模的通用机器学习方法
  • 批准号:
    572659-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 41.06万
  • 项目类别:
    University Undergraduate Student Research Awards
Novel Methods for Numerical Simulation of Wave Propagation in Inhomogeneous Media
非均匀介质中波传播数值模拟的新方法
  • 批准号:
    2110407
  • 财政年份:
    2021
  • 资助金额:
    $ 41.06万
  • 项目类别:
    Standard Grant
Computational and machine learning methods for model reduction, uncertainty propagation, and parameter identification in fluid and solid mechanics
流体和固体力学中模型简化、不确定性传播和参数识别的计算和机器学习方法
  • 批准号:
    RGPIN-2021-02693
  • 财政年份:
    2021
  • 资助金额:
    $ 41.06万
  • 项目类别:
    Discovery Grants Program - Individual
Robust and Efficient Numerical Methods for Electromagnetic Wave Propagation in Complex Media
复杂介质中电磁波传播的鲁棒高效数值方法
  • 批准号:
    2011943
  • 财政年份:
    2020
  • 资助金额:
    $ 41.06万
  • 项目类别:
    Standard Grant
Advances in Numerical Methods for Wave Propagation in Inhomogeneous Media
非均匀介质中波传播数值方法的进展
  • 批准号:
    2105487
  • 财政年份:
    2020
  • 资助金额:
    $ 41.06万
  • 项目类别:
    Standard Grant
Fluid-filled Fracture Propagation with a Phase Field Approach in Subsurface by Employing Nonlinear Strain Limiting Models and Enriched Galerkin Methods
采用非线性应变限制模型和丰富伽辽金方法在地下采用相场方法进行充液裂缝扩展
  • 批准号:
    1913016
  • 财政年份:
    2019
  • 资助金额:
    $ 41.06万
  • 项目类别:
    Standard Grant
Optimized Domain Decomposition Methods for Wave Propagation in Complex Media
复杂介质中波传播的优化域分解方法
  • 批准号:
    1908602
  • 财政年份:
    2019
  • 资助金额:
    $ 41.06万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了