Novel Methods for Numerical Simulation of Wave Propagation in Inhomogeneous Media

非均匀介质中波传播数值模拟的新方法

基本信息

  • 批准号:
    2110407
  • 负责人:
  • 金额:
    $ 33.48万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Many types of waves propagate through inhomogeneous media, such as light waves propagating in the air, where the particle density depends on the height of the atmospheric layers, acoustic waves propagating in the water, where the salinity depends on the ocean depth, or seismic waves propagating in the earth, where the density of geological layers varies depending on their sedimentation history. The scientific thrust of this project is devoted to the development of numerical simulation tools for wave propagation in anisotropic and inhomogeneous media. The principal application targeted is wave propagation in aeroacoustics to study the noise generated by a turbo-reactor in a flow, where the source of inhomogeneity and anisotropy is the non-uniform air flow around the engine. Yet the methods considered will also apply to other variable material properties such as permittivity or sound speed.This project is concerned with the further development of a class of Trefftz-like methods. Trefftz methods rely, in broad terms, on the idea of approximating solutions to partial differential equations using local basis functions, which are exact solutions of the governing equation, making explicit use of information about the ambient medium. Instead, the new methods rely on basis functions that are approximate solutions of the governing equation rather than exact solutions. The PI therefore refers to such methods as quasi-Trefftz methods. The goal of this project is two-fold: (1) investigate the properties of the quasi-Trefftz methods when using a high-order local basis; (2) investigate numerical integration techniques for the corresponding basis functions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
许多类型的波通过不均匀介质传播,例如在空气中传播的光波,其中粒子密度取决于大气层的高度,在水中传播的声波,其中盐度取决于海洋深度,或在地球中传播的地震波,其中地质层的密度根据其沉积历史而变化。该项目的科学主旨致力于开发波在各向异性和非均匀介质中传播的数值模拟工具。主要应用目标是气动声学中的波传播,以研究涡轮反应器在流动中产生的噪声,其中不均匀性和各向异性的来源是发动机周围的不均匀气流。然而,所考虑的方法也适用于其他可变材料属性,例如介电常数或声速。该项目涉及一类类似 Trefftz 的方法的进一步开发。从广义上讲,Trefftz 方法依赖于使用局部基函数逼近偏微分方程解的思想,局部基函数是控制方程的精确解,明确地利用了有关环境介质的信息。相反,新方法依赖于控制方程的近似解而不是精确解的基函数。因此,PI 将此类方法称为准 Trefftz 方法。该项目的目标有两个:(1) 研究使用高阶局部基时拟 Trefftz 方法的属性; (2) 研究相应基函数的数值积分技术。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lise-Marie Imbert-Gerard其他文献

Lise-Marie Imbert-Gerard的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lise-Marie Imbert-Gerard', 18)}}的其他基金

Advances in Numerical Methods for Wave Propagation in Inhomogeneous Media
非均匀介质中波传播数值方法的进展
  • 批准号:
    2105487
  • 财政年份:
    2020
  • 资助金额:
    $ 33.48万
  • 项目类别:
    Standard Grant
Advances in Numerical Methods for Wave Propagation in Inhomogeneous Media
非均匀介质中波传播数值方法的进展
  • 批准号:
    1818747
  • 财政年份:
    2018
  • 资助金额:
    $ 33.48万
  • 项目类别:
    Standard Grant

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Novel Numerical Methods for Nonlinear Stochastic PDEs and High Dimensional Computation
非线性随机偏微分方程和高维计算的新数值方法
  • 批准号:
    2309626
  • 财政年份:
    2023
  • 资助金额:
    $ 33.48万
  • 项目类别:
    Continuing Grant
A novel development of optimization and deep learning methods based on the idea of structure-preserving numerical analysis
基于结构保持数值分析思想的优化和深度学习方法的新发展
  • 批准号:
    21H03452
  • 财政年份:
    2021
  • 资助金额:
    $ 33.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Novel Decompositions and Fast Numerical Methods for Peridynamics
近场动力学的新颖分解和快速数值方法
  • 批准号:
    2108588
  • 财政年份:
    2021
  • 资助金额:
    $ 33.48万
  • 项目类别:
    Standard Grant
Novel mathematics and numerical methods for ferromagnetic problems
铁磁问题的新颖数学和数值方法
  • 批准号:
    DP190101197
  • 财政年份:
    2019
  • 资助金额:
    $ 33.48万
  • 项目类别:
    Discovery Projects
Novel physical and numerical methods for simulating water and heat transfer in land surface models.
用于模拟地表模型中水和热传递的新颖物理和数值方法。
  • 批准号:
    2202955
  • 财政年份:
    2019
  • 资助金额:
    $ 33.48万
  • 项目类别:
    Studentship
Novel physical and numerical methods for simulating water, heat and gas transfer in land surface models, with focus on UKMO JULES model
用于模拟地表模型中水、热和气体传递的新颖物理和数值方法,重点是 UKMO JULES 模型
  • 批准号:
    NE/R008469/1
  • 财政年份:
    2019
  • 资助金额:
    $ 33.48万
  • 项目类别:
    Training Grant
Novel numerical methods for emerging additive manufacturing technology of Organic-Light Emitting Diodes O-LED
有机发光二极管 O-LED 新兴增材制造技术的新颖数值方法
  • 批准号:
    1972026
  • 财政年份:
    2017
  • 资助金额:
    $ 33.48万
  • 项目类别:
    Studentship
The combination of numerical methods from a novel linear transformation model and laser diagnostic methods for the characterisation of laminar flames
将新型线性变换模型的数值方法与激光诊断方法相结合来表征层流火焰
  • 批准号:
    397116102
  • 财政年份:
    2017
  • 资助金额:
    $ 33.48万
  • 项目类别:
    Research Fellowships
Novel Numerical Methods for Additive Manufacturing 3D Printing of Dissimilar Materials
异种材料增材制造 3D 打印的新颖数值方法
  • 批准号:
    1823167
  • 财政年份:
    2016
  • 资助金额:
    $ 33.48万
  • 项目类别:
    Studentship
Novel numerical methods for fully nonlinear second order elliptic and parabolic Monge-Ampere and Hamilton-Jacobi-Bellman equations
全非线性二阶椭圆和抛物线 Monge-Ampere 和 Hamilton-Jacobi-Bellman 方程的新颖数值方法
  • 批准号:
    1620168
  • 财政年份:
    2016
  • 资助金额:
    $ 33.48万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了