Banach Space and Metric Geometry
巴纳赫空间和度量几何
基本信息
- 批准号:1301604
- 负责人:
- 金额:$ 29.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-08-15 至 2017-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The problems in Banach space and metric geometry to be considered fall into several subcategories: commutators of operators on Banach spaces, approximation properties of Banach spaces, the structure of finite and infinite dimensional spaces of p-integrable functions, the non linear classification of Banach spaces, discrete metric geometry, quantitative linear algebra, and cluster value problems in an infinite dimensional setting. These topics are at the heart of the geometries of Banach spaces and of metric spaces and make contact with many other areas within mathematics, including operator theory, group theory, geometric analysis, and linear algebra.Metric spaces, especially Banach spaces, form the conceptual framework in which mathematicians, scientists, and engineers work when investigating problems that involve estimation or approximation. Discrete metric geometry, including dimensional reduction results which have been established by the PI, is important in the design of algorithms and in compressed sensing. Work on the classification of operators which are commuters was originally motivated by the uncertainty principle in quantum mechanics (which, from a mathematical point of view, arises because certain operators do not commute). Non linear phenomena often occurs in nature but is difficult to deal with. This makes it important to understand when non linearity actually conceals underlying linear structure, and this is central to the non linear study of Banach spaces. Parts of this research project are coordinated with the Workshop in Analysis and Probability Theory at Texas A&M University, which is directed by the PI. The Workshop encourages interactions among researchers and apprentices in different mathematical fields by bringing together graduate students and junior and senior postdoctoral participants in several areas of analysis. Activities of the Workshop include seminars, Concentration Weeks, introductory lectures, and an annual conference. The efforts of the principal investigators and other participants in the Workshop are helping to break down barriers between different areas of mathematics and also promote the outreach of pure mathematics to other sciences, especially to computer science.
在Banach空间和度量几何的问题要考虑分为几个子类:算子的Banach空间,逼近性质的Banach空间,结构的有限和无限维空间的p-可积函数,非线性分类的Banach空间,离散度量几何,定量线性代数,和集群值问题在无限维设置。 这些主题是Banach空间和度量空间几何的核心,并与数学中的许多其他领域,包括算子论,群论,几何分析和线性代数联系在一起。度量空间,特别是Banach空间,形成了数学家,科学家和工程师在研究涉及估计或近似的问题时的概念框架。 离散度量几何,包括降维结果已建立的PI,是重要的算法设计和压缩感知。对可交换算符的分类工作最初是由量子力学中的不确定性原理(从数学的角度来看,这是因为某些算符不可交换)推动的。非线性现象在自然界中经常发生,但很难处理。 这使得理解非线性何时实际上隐藏了潜在的线性结构变得很重要,这是Banach空间非线性研究的核心。该研究项目的部分内容与德克萨斯A M大学的分析和概率论研讨会协调,该研讨会由PI指导。该研讨会鼓励研究人员和学徒在不同的数学领域之间的互动,汇集了研究生和初级和高级博士后参与者在几个分析领域。 研讨会的活动包括研讨会、集中周、介绍性讲座和年度会议。 主要研究人员和讲习班其他参加者的努力正在帮助打破不同数学领域之间的障碍,并促进纯数学向其他科学,特别是计算机科学的推广。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William Johnson其他文献
V-braille: haptic braille perception using a touch-screen and vibration on mobile phones
V-braille:使用触摸屏和手机振动进行触觉盲文感知
- DOI:
10.1145/1878803.1878878 - 发表时间:
2010 - 期刊:
- 影响因子:2
- 作者:
C. Jayant;Christine Acuario;William Johnson;Janet Hollier;R. Ladner - 通讯作者:
R. Ladner
Distinct Patterns of CD4+ and CD8+ T-Cell Clonal Expansion Enable Broad Clinical Responses to Pembrolizumab + GVD in Patients with Relapsed Hodgkin Lymphoma
- DOI:
10.1182/blood-2023-185083 - 发表时间:
2023-11-02 - 期刊:
- 影响因子:
- 作者:
Beatriz Wills;Jahan Rahman;Nivetha Ganesan;Gunjan L. Shah;Ariela Noy;Heiko Schoder;Joachim Yahalom;Anita Kumar;Lorenzo Falchi;Paul A. Hamlin;Maria Lia Palomba;William Johnson;Andrew M. Intlekofer;Philip Caron;Theresa Davey;Helen Hancock;Natasha Galasso;Brittney Munayirji;Ya Hui Lin;Alayna Santarosa - 通讯作者:
Alayna Santarosa
Clinical Characteristics and Outcomes of Limited Stage High Grade B-Cell Lymphoma with <em>MYC/BCL2</em> and/or <em>BCL6</em> Rearrangements: A Single Center Experience
- DOI:
10.1182/blood-2023-173562 - 发表时间:
2023-11-02 - 期刊:
- 影响因子:
- 作者:
Jennifer Kimberly Lue;Efrat Luttwak;Philip Caron;Alexander P. Boardman;Kevin A. David;Alfredo Rivas-Delgado;Zachary D. Epstein-Peterson;Lorenzo Falchi;Paola Ghione;Paul A. Hamlin;Steven M. Horwitz;Andrew M. Intlekofer;William Johnson;Anita Kumar;Alison Moskowitz;Ariela Noy;Maria Lia Palomba;Robert Stuver;Pallawi Torka;Santosha A Vardhana - 通讯作者:
Santosha A Vardhana
Feasibility and Outcomes of Outpatient and Short-Stay EVAR: A Retrospective Study and Review of the Literature
- DOI:
10.1016/j.jvs.2014.08.051 - 发表时间:
2014-11-01 - 期刊:
- 影响因子:
- 作者:
Aaron Lo A;Ivica Vucemilo;Sean Crawford;Chris Werneck;William Johnson;Marc Pope - 通讯作者:
Marc Pope
Suprarenal vs Infrarenal Graft Fixation Does Not Affect Outcomes After Endovascular Aortic Aneurysm Repair in Patients with Favorable Neck Anatomy
- DOI:
10.1016/j.jvs.2023.03.374 - 发表时间:
2023-06-01 - 期刊:
- 影响因子:
- 作者:
Molly Ratner;Caron Rockman;William Johnson;Todd Berland;Thomas S. Maldonado;Neal Cayne;Virendra I. Patel;Jeffrey J. Siracuse;Glenn Jacobowitz;Bhama Ramkhelawon;Heepeel Chang;Karan Garg - 通讯作者:
Karan Garg
William Johnson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('William Johnson', 18)}}的其他基金
EAGER: Mercury and methylmercury isotope tracing in high-dissolved organic matter high-salinity environments
EAGER:高溶解有机物高盐度环境中的汞和甲基汞同位素示踪
- 批准号:
2229765 - 财政年份:2022
- 资助金额:
$ 29.3万 - 项目类别:
Standard Grant
Acquisition of Flow Total Internal Reflection Fluorescence Video Microscopy System to Support Investigation of Nano- and Micro-Particle Transport and Surface Interaction
采集流全内反射荧光视频显微镜系统以支持纳米和微米颗粒传输和表面相互作用的研究
- 批准号:
2141193 - 财政年份:2022
- 资助金额:
$ 29.3万 - 项目类别:
Standard Grant
Collaborative Research: Development of a Better Understanding of Ambient RM Chemistry, Reactions Forming, and Methods for Measurement
合作研究:更好地理解环境 RM 化学、反应形成和测量方法
- 批准号:
2043165 - 财政年份:2021
- 资助金额:
$ 29.3万 - 项目类别:
Continuing Grant
Collaborative Research: Predicting Colloid Distribution in Subsurface Granular Media by Resolving Nanoscale Heterogeneity and Continuum-Scale Flow Field Topologic Impacts
合作研究:通过解决纳米级异质性和连续尺度流场拓扑影响来预测地下颗粒介质中的胶体分布
- 批准号:
1951676 - 财政年份:2020
- 资助金额:
$ 29.3万 - 项目类别:
Standard Grant
Geometry of Banach Spaces and Metric Spaces
Banach 空间和度量空间的几何
- 批准号:
1900612 - 财政年份:2019
- 资助金额:
$ 29.3万 - 项目类别:
Continuing Grant
Collaborative Research: Closing the Bulk Metallic Glass Data Gap in the Supercooled Region
合作研究:缩小过冷区域的块状金属玻璃数据差距
- 批准号:
1710744 - 财政年份:2017
- 资助金额:
$ 29.3万 - 项目类别:
Standard Grant
DMREF: Collaborative Research: Interface-promoted Assembly and Disassembly Processes for Rapid Manufacture and Transport of Complex Hybrid Nanomaterials
DMREF:合作研究:用于快速制造和运输复杂混合纳米材料的界面促进的组装和拆卸过程
- 批准号:
1629078 - 财政年份:2016
- 资助金额:
$ 29.3万 - 项目类别:
Standard Grant
Collaborative Research: Nano- and micro-particle transport prediction in subsurface media: The role of heterogeneity and structure
合作研究:地下介质中纳米和微米颗粒的输运预测:异质性和结构的作用
- 批准号:
1547533 - 财政年份:2016
- 资助金额:
$ 29.3万 - 项目类别:
Standard Grant
相似国自然基金
基于非对称k-space算子分解的时空域声波和弹性波隐式有限差分新方法研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
联合QISS和SPACE一站式全身NCE-MRA对原发性系统性血管炎的诊断价值的研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:0.0 万元
- 项目类别:省市级项目
三维流形的L-space猜想和左可序性
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高维space-filling问题及其相关问题
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
难治性焦虑障碍儿童青少年父母基于SPACE 应对技能训练团体干预疗效
- 批准号:20Y11906700
- 批准年份:2020
- 资助金额:0.0 万元
- 项目类别:省市级项目
Rigged Hilbert Space与Bethe-Salpeter方程框架下强子共振态的理论研究
- 批准号:11975075
- 批准年份:2019
- 资助金额:60.0 万元
- 项目类别:面上项目
Space-surface Multi-GNSS机会信号感知植生参数建模与融合方法研究
- 批准号:41974039
- 批准年份:2019
- 资助金额:63.0 万元
- 项目类别:面上项目
基于无线光载射频(Radio over Free Space Optics)技术的分布式天线系统关键技术研究
- 批准号:60902038
- 批准年份:2009
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
SPACE-RIP并行磁共振成像算法及其临床应用的研究
- 批准号:30670578
- 批准年份:2006
- 资助金额:28.0 万元
- 项目类别:面上项目
相似海外基金
Construction of metric space for datasets and learning algorithms
数据集和学习算法的度量空间构建
- 批准号:
22H03620 - 财政年份:2022
- 资助金额:
$ 29.3万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Dimension Reduction and Data Visualization for Regression Analysis of Metric-Space-Valued Data
用于度量空间值数据回归分析的降维和数据可视化
- 批准号:
2210775 - 财政年份:2022
- 资助金额:
$ 29.3万 - 项目类别:
Standard Grant
CareBand: A Collaborative Pilot Study to Optimize a Life-Space Performance Metric for Monitoring and Early Detection of Alzheimer's Disease and Related Dementias in Rural and Indigenous Communities
CareBand:一项合作试点研究,旨在优化生活空间绩效指标,以监测和早期发现农村和土著社区的阿尔茨海默病和相关痴呆症
- 批准号:
10212745 - 财政年份:2021
- 资助金额:
$ 29.3万 - 项目类别:
BIGDATA: F: Metric-space Positioning Systems for Symbolic Data Science
BIGDATA:F:用于符号数据科学的度量空间定位系统
- 批准号:
1836914 - 财政年份:2018
- 资助金额:
$ 29.3万 - 项目类别:
Standard Grant
Geometric structure of Weil-Petersson metric on infinite dimensional Teichmuller space
无限维Teichmuller空间上Weil-Petersson度量的几何结构
- 批准号:
18K13410 - 财政年份:2018
- 资助金额:
$ 29.3万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
From mimesis to metric: The changing awareness of space as a category of administration caused by cartography in Northern Germany during the late 16th and early 17th century
从模仿到公制:16 世纪末和 17 世纪初德国北部的制图学引起了对空间作为一种管理类别的认识的变化
- 批准号:
328856666 - 财政年份:2017
- 资助金额:
$ 29.3万 - 项目类别:
Research Grants
Construction, singularities and porlarlization of moduli space of metric spaces via Quantum statistical mechanics
基于量子统计力学的度量空间模空间的构造、奇异性和极化
- 批准号:
26610017 - 财政年份:2014
- 资助金额:
$ 29.3万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Linear quasi-metric and sequence representation of Shepp space
Shepp 空间的线性拟度量和序列表示
- 批准号:
26400155 - 财政年份:2014
- 资助金额:
$ 29.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Self-organization of magnetospheric plasma confinement: nonlinear effect of distorted metric in foliated phase space
磁层等离子体约束的自组织:叶状相空间中扭曲度量的非线性效应
- 批准号:
23224014 - 财政年份:2011
- 资助金额:
$ 29.3万 - 项目类别:
Grant-in-Aid for Scientific Research (S)