Regular Algebras

正则代数

基本信息

  • 批准号:
    1302050
  • 负责人:
  • 金额:
    $ 13.25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-08-15 至 2018-07-31
  • 项目状态:
    已结题

项目摘要

This award supports the research of Michaela Vancliff to work in non-commutative algebra, with special emphasis on problems arising from the theory of AS-regular algebras and algebraic geometry. She is interested in the graded-module category viewed as a geometric space, with certain graded modules playing the role of geometric objects. The linear geometric modules (point modules, line modules, etc.) are parametrized by so-called linear schemes. Vancliff plans to study how the structure and role of higher-dimensional linear schemes generalize the structure and role of point schemes. Under prior NSF support, in work with T. Cassidy, Vancliff produced algebro-geometric techniques that allow the easy construction of certain AS-regular algebras (that generalize graded Clifford algebras) of any finite global dimension, naming such algebras graded skew Clifford algebras. Vancliff intends to study such AS-regular algebras of global dimension four that have finitely many points and a one-parameter family of line modules as a step towards classifying the line schemes that arise for "generic" quadratic AS-regular algebras of global dimension four. Her initial research with B. Shelton (under prior NSF support) suggests that such an algebra should have a line scheme that consists of exactly six elliptic curves, so if this is found to hold in general, then it would mimic the point scheme of generic quadratic AS-regular algebras of global dimension three (where it is one elliptic curve).Mathematics in general is the study of patterns and frequently such patterns are described via systems of equations. For instance, systems of polynomial-style equations and their solutions play a critical role in almost every scientific field, such as statistical mechanics, elementary-particle physics, quantum mechanics, robotics, crystallography, networking, etc. Often, the solutions cannot be found by experimentation, and often they are not numbers but are functions (e.g., differential operators or matrices), and so, in general, they do not commute. The science of seeking methods that find all solutions to any system of polynomial-style equations in non-commuting variables is called non-commutative algebra. To find the solutions, the main idea is as follows. One associates to such a system of equations an entity, called an "algebra," that encodes all the properties of the original equations. Associated to this algebra are "modules," and these encode all the properties of the solutions to the equations. So, in order to find all the solutions, one should find all the modules for the associated algebra. In many of the applications, the algebras that arise in this way tend to share certain properties satisfied by commuting polynomials; such algebras are called AS-regular algebras and are the main focus of Vancliff's projects. One of the goals of the study of such algebras and their modules is to use geometric techniques to find certain modules (point modules, line modules, etc) of the AS-regular algebra, and then to use those modules to find the modules that give the solutions to the original system of equations. Vancliff's underlying goal is to improve on these geometric techniques and to understand better how they relate to the structure of the category of modules.
该奖项支持Michaela Vancliff致力于非交换代数的研究,特别强调由AS-正则代数理论和代数几何引起的问题。她对被视为几何空间的分级模范畴感兴趣,某些分级模扮演几何对象的角色。线性几何模(点模、线模等)是由所谓的线性方案来参数化的。Vancliff计划研究高维线性格式的结构和作用如何概括点格式的结构和作用。在以前的NSF支持下,Vancliff与T.Cassidy合作,提出了代数几何技术,允许容易地构造任意有限整体维AS-正则代数(推广了分次Clifford代数),将这种代数命名为分次斜Clifford代数。Vancliff打算研究这样的具有有限多个点的全局维四次正则代数和一个单参数线模族,以此作为对全局维四维二次A-正则代数的线型进行分类的一步。她和B.Shelton(在之前的NSF支持下)的初步研究表明,这样的代数应该有一个正好由六条椭圆曲线组成的直线方案,所以如果发现这一点方案在一般情况下成立,那么它将模仿全局维度为三的通用二次AS-正则代数的点方案(其中它是一条椭圆曲线)。数学通常是对模式的研究,并且通常通过方程系统来描述这种模式。例如,多项式形式的方程组及其解在几乎每个科学领域都发挥着关键作用,如统计力学、基本粒子物理、量子力学、机器人、结晶学、网络等。通常,解不能通过实验找到,而且往往不是数字,而是函数(例如,微分运算符或矩阵),因此,通常情况下,它们不能互换。寻找在非对易变量中找到任何多项式型方程组的所有解的方法的科学称为非对易代数。为了找到解决方案,主要思路如下。人们将这样一个方程式系统与一个称为“代数”的实体联系在一起,它编码了原始方程式的所有性质。与这个代数相关联的是“模”,这些“模”编码了方程解的所有属性。因此,为了找到所有的解,我们应该找到相关代数的所有模。在许多应用中,以这种方式产生的代数往往共享交换多项式所满足的某些性质;这种代数被称为正则代数,是Vancliff项目的主要焦点。研究这类代数及其模的目的之一是利用几何技巧找到AS-正则代数的某些模(点模、线模等),然后利用这些模找到给出原始方程组的解的模。Vancliff的基本目标是改进这些几何技术,并更好地了解它们与模块类别的结构之间的关系。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michaela Vancliff其他文献

Generalizing Classical Clifford Algebras, Graded Clifford Algebras and their Associated Geometry

Michaela Vancliff的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michaela Vancliff', 18)}}的其他基金

Regular Algebras
正则代数
  • 批准号:
    0900239
  • 财政年份:
    2009
  • 资助金额:
    $ 13.25万
  • 项目类别:
    Standard Grant
Regular Algebras
正则代数
  • 批准号:
    0457022
  • 财政年份:
    2005
  • 资助金额:
    $ 13.25万
  • 项目类别:
    Standard Grant
Regular Algebras
正则代数
  • 批准号:
    0200757
  • 财政年份:
    2002
  • 资助金额:
    $ 13.25万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Quadratic Regular Algebras
数学科学:二次正则代数
  • 批准号:
    9996056
  • 财政年份:
    1998
  • 资助金额:
    $ 13.25万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Quadratic Regular Algebras
数学科学:二次正则代数
  • 批准号:
    9622765
  • 财政年份:
    1996
  • 资助金额:
    $ 13.25万
  • 项目类别:
    Standard Grant

相似海外基金

Research on Koszul AS-regular algebras from the categorical view of Non-commutative algebraic geometry and Representation theory
从非交换代数几何和表示论范畴角度研究Koszul AS-正则代数
  • 批准号:
    21K13781
  • 财政年份:
    2021
  • 资助金额:
    $ 13.25万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Deformations of regular algebras
正则代数的变形
  • 批准号:
    551759-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 13.25万
  • 项目类别:
    University Undergraduate Student Research Awards
Point schemes of four dimensional regular algebras
四维正则代数的点格式
  • 批准号:
    551688-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 13.25万
  • 项目类别:
    University Undergraduate Student Research Awards
Koszul AS-regular algebras in terms of Non-commutative algebraic geometry and Representation theory
Koszul AS-非交换代数几何和表示论中的正则代数
  • 批准号:
    18K13397
  • 财政年份:
    2018
  • 资助金额:
    $ 13.25万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Research in Noncommutative Algebra: Hopf Algebra Actions on Noetherian Artin-Schelter Regular Algebras and Noncommutative McKay Correspondence
非交换代数研究:Noetherian Artin-Schelter 正则代数上的 Hopf 代数作用和非交换麦凯对应
  • 批准号:
    1700825
  • 财政年份:
    2017
  • 资助金额:
    $ 13.25万
  • 项目类别:
    Standard Grant
Hochschild Cohology of Regular Algebras
正则代数的 Hochschild 上行学
  • 批准号:
    450063-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 13.25万
  • 项目类别:
    University Undergraduate Student Research Awards
Four dimensional regular algebras
四维正则代数
  • 批准号:
    400968-2010
  • 财政年份:
    2010
  • 资助金额:
    $ 13.25万
  • 项目类别:
    University Undergraduate Student Research Awards
Regular Algebras
正则代数
  • 批准号:
    0900239
  • 财政年份:
    2009
  • 资助金额:
    $ 13.25万
  • 项目类别:
    Standard Grant
Deformations of regular algebras
正则代数的变形
  • 批准号:
    370548-2008
  • 财政年份:
    2008
  • 资助金额:
    $ 13.25万
  • 项目类别:
    University Undergraduate Student Research Awards
Deformations of regular algebras
正则代数的变形
  • 批准号:
    354007-2007
  • 财政年份:
    2007
  • 资助金额:
    $ 13.25万
  • 项目类别:
    University Undergraduate Student Research Awards
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了