Research in Noncommutative Algebra: Hopf Algebra Actions on Noetherian Artin-Schelter Regular Algebras and Noncommutative McKay Correspondence
非交换代数研究:Noetherian Artin-Schelter 正则代数上的 Hopf 代数作用和非交换麦凯对应
基本信息
- 批准号:1700825
- 负责人:
- 金额:$ 16.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-15 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Invariants such as dimensions and symmetries are useful tools in mathematics and other disciplines. Understanding links between different invariants is a demanding task in modern mathematics. This research project is to study noncommutative algebras (mathematical structures in which xy does not necessarily equal yx) by using algebraic, combinatorial, geometric, and other invariants, and to build a bridge between the subject of noncommutative algebra and other active research areas. The PI will investigate the structure of several important families of algebras and work on central questions in the subject. Since noncommutative algebras have been used extensively, this project will deepen the understanding of other mathematical areas including noncommutative algebraic geometry, commutative algebra and mathematical physics.A central theme of the proposal is the noncommutative McKay correspondence, a concept motivated by the classical McKay correspondence that has recently been extended to several new areas. Specific topics include noncommutative quotient singularities of Hopf algebra actions on Artin-Schelter regular algebras; skew Calabi-Yau property and the Nakayama automorphism of Artin-Schelter Gorenstein algebras; and the noncommutative discriminant of algebras which are module-finite over their center. The PI has introduced a number of invariants with fruitful applications in the study of automorphism groups and locally nilpotent derivations of noncommutative algebras, as well as the noncommutative Zariski cancellation problem. The PI will continue to search for distinct invariants of noncommutative algebras, to develop foundations for new research directions, and to work on central open questions in the field. The noncommutative McKay correspondence is one essential guideline for the interplay between noncommutative algebra, Hopf algebra and theory of quantum groups, noncommutative invariant theory, and noncommutative algebraic geometry.
不变量,如维度和对称性,在数学和其他学科中是有用的工具。在现代数学中,理解不同不变量之间的联系是一项艰巨的任务。本研究项目旨在利用代数、组合、几何等不变量来研究非交换代数(其中xy不一定等于yx的数学结构),并在非交换代数学科和其他活跃的研究领域之间架起一座桥梁。PI将研究几个重要的代数族的结构,并致力于这门学科的中心问题。由于非交换代数已经得到了广泛的应用,这个项目将加深对其他数学领域的理解,包括非交换代数几何、交换代数和数学物理。该提议的一个中心主题是非交换McKay对应,这一概念源于经典的McKay对应,最近被扩展到几个新的领域。具体的主题包括:Artin-Schelter正则代数上Hopf代数作用的非对易商奇性;Artin-Schelter Gorenstein代数的斜Calabi-Yau性质和Nakayama自同构;以及中心模有限的代数的非对易判别式。PI引入了一些不变量,在研究非交换代数的自同构群和局部幂零导子以及非交换Zariski消去问题方面有很好的应用。PI将继续寻找非交换代数的独特不变量,为新的研究方向发展基础,并致力于该领域的中心开放问题。非对易McKay对应是非对易代数、Hopf代数与量子群理论、非对易不变理论、非对易代数几何之间相互作用的一个基本准则。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Frobenius–Perron theory of modified ADE bound quiver algebras
修正的 ADE 边界箭袋代数的 Frobenius 佩隆理论
- DOI:10.1016/j.jpaa.2018.09.013
- 发表时间:2019
- 期刊:
- 影响因子:0.8
- 作者:Wicks, Elizabeth
- 通讯作者:Wicks, Elizabeth
AUSLANDER’S THEOREM FOR GROUP COACTIONS ON NOETHERIAN GRADED DOWN-UP ALGEBRAS
- DOI:10.1007/s00031-020-09565-5
- 发表时间:2018-01
- 期刊:
- 影响因子:0.7
- 作者:Jianmin Chen;E. Kirkman;J. J. Zhang-J.
- 通讯作者:Jianmin Chen;E. Kirkman;J. J. Zhang-J.
Cancellation of Morita and skew types
- DOI:10.1007/s11856-021-2199-9
- 发表时间:2021-09
- 期刊:
- 影响因子:1
- 作者:Xin Tang;James J. Zhang;Xiangui Zhao
- 通讯作者:Xin Tang;James J. Zhang;Xiangui Zhao
Degree bounds for Hopf actions on Artin–Schelter regular algebras
- DOI:10.1016/j.aim.2022.108197
- 发表时间:2020-08
- 期刊:
- 影响因子:1.7
- 作者:E. Kirkman;R. Won;James J. Zhang
- 通讯作者:E. Kirkman;R. Won;James J. Zhang
Frobenius–Perron theory of representations of quivers
- DOI:10.1007/s00209-021-02888-3
- 发表时间:2020-04
- 期刊:
- 影响因子:0.8
- 作者:J. J. Zhang-J.;J.-H. Zhou
- 通讯作者:J. J. Zhang-J.;J.-H. Zhou
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jian Zhang其他文献
Auto-Body Panel Springback Analysis Using Yoshida-Uemori Model
使用 Yoshida-Uemori 模型进行车身板回弹分析
- DOI:
10.4028/www.scientific.net/amr.314-316.815 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
K. Hu;Xiongqi Peng;Jun Chen;H. Lu;Jian Zhang - 通讯作者:
Jian Zhang
Evaluation of Radioiodinated 1,4-Naphthoquinones as Necrosis Avid Agents for Rapid Myocardium Necrosis Imaging
放射性碘化 1,4-萘醌作为心肌坏死快速成像的坏死亲和剂的评价
- DOI:
10.1007/s11307-017-1089-3 - 发表时间:
2018-02 - 期刊:
- 影响因子:3.1
- 作者:
Chang Su;Dongjian Zhang;Na Bao;Aiyan Ji;Yuanbo Feng;Li Chen;Yicheng Ni;Jian Zhang;Zhiqi Yin - 通讯作者:
Zhiqi Yin
Large magnetic entropy change and enhanced mechanical properties of Ni–Mn–Sn–C alloys
Ni-Mn-Sn-C合金的大磁熵变和增强的力学性能
- DOI:
10.1016/j.scriptamat.2013.11.009 - 发表时间:
2014-03 - 期刊:
- 影响因子:6
- 作者:
Yu Zhang;Jian Liu;Qiang Zheng;Jian Zhang;Weixing Xia;Juan Du;Aru Yan - 通讯作者:
Aru Yan
Low-temperature synthesis of carbonate-intercalated NixFe-layered double hydroxides for enhanced adsorption properties
低温合成碳酸盐插层 NixFe 层状双氢氧化物以增强吸附性能
- DOI:
10.1016/j.apsusc.2020.147281 - 发表时间:
2020-11 - 期刊:
- 影响因子:0
- 作者:
Zhuwu Jiang;Lihong Yan;Jiangnan Wu;Liu Xinru;Jian Zhang;Yu-Ming Zheng;Yanyan Pei - 通讯作者:
Yanyan Pei
Fueling the passion: The role online brand experiences play in developing harmonious or obsessive brand passion
激发激情:在线品牌体验在培养和谐或痴迷的品牌激情方面发挥的作用
- DOI:
10.3233/hsm-211566 - 发表时间:
2022-02 - 期刊:
- 影响因子:2.3
- 作者:
Chunxiao Chen;Jian Zhang;Xing Bu;Jian Gao - 通讯作者:
Jian Gao
Jian Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jian Zhang', 18)}}的其他基金
Collaborative Research: CCSS: When RFID Meets AI for Occluded Body Skeletal Posture Capture in Smart Healthcare
合作研究:CCSS:当 RFID 与人工智能相遇,用于智能医疗保健中闭塞的身体骨骼姿势捕获
- 批准号:
2245607 - 财政年份:2023
- 资助金额:
$ 16.9万 - 项目类别:
Standard Grant
From Covariance Regressions to Nonparametric Dynamic Causal Modelling (CoreDCM)
从协方差回归到非参数动态因果建模 (CoreDCM)
- 批准号:
EP/X038297/1 - 财政年份:2023
- 资助金额:
$ 16.9万 - 项目类别:
Research Grant
Topics in noncommutative algebra 2022: homological regularities
2022 年非交换代数专题:同调正则
- 批准号:
2302087 - 财政年份:2023
- 资助金额:
$ 16.9万 - 项目类别:
Continuing Grant
NSF Showcase for DUE Projects at the ACM SIGCSE Symposium
NSF 在 ACM SIGCSE 研讨会上展示 DUE 项目
- 批准号:
2245139 - 财政年份:2022
- 资助金额:
$ 16.9万 - 项目类别:
Standard Grant
Realistic fault modelling to enable optimization of low power IoT and Cognitive fault-tolerant computing systems
现实故障建模可优化低功耗物联网和认知容错计算系统
- 批准号:
EP/T026022/1 - 财政年份:2021
- 资助金额:
$ 16.9万 - 项目类别:
Research Grant
Recent Advances and New Directions in the Interplay of Noncommutative Algebra and Geometry
非交换代数与几何相互作用的最新进展和新方向
- 批准号:
1953148 - 财政年份:2020
- 资助金额:
$ 16.9万 - 项目类别:
Standard Grant
Recent Developments in Noncommutative Algebra and Related Areas
非交换代数及相关领域的最新进展
- 批准号:
1764210 - 财政年份:2018
- 资助金额:
$ 16.9万 - 项目类别:
Standard Grant
Collaborative Research: Real Time Spectroscopic Studies of Hybrid MOF Photocatalysts for Solar Fuel Production
合作研究:用于太阳能燃料生产的混合 MOF 光催化剂的实时光谱研究
- 批准号:
1706632 - 财政年份:2017
- 资助金额:
$ 16.9万 - 项目类别:
Standard Grant
Collaborative Research: Spatial Skills and Success in Introductory Computing
协作研究:空间技能和入门计算的成功
- 批准号:
1711780 - 财政年份:2017
- 资助金额:
$ 16.9万 - 项目类别:
Standard Grant
相似海外基金
Topics in noncommutative algebra 2022: homological regularities
2022 年非交换代数专题:同调正则
- 批准号:
2302087 - 财政年份:2023
- 资助金额:
$ 16.9万 - 项目类别:
Continuing Grant
Geometric Insights in Noncommutative Algebra
非交换代数中的几何见解
- 批准号:
2201273 - 财政年份:2022
- 资助金额:
$ 16.9万 - 项目类别:
Standard Grant
Women in Noncommutative Algebra and Representation Theory Workshop 3
非交换代数和表示论中的女性研讨会 3
- 批准号:
2203108 - 财政年份:2022
- 资助金额:
$ 16.9万 - 项目类别:
Standard Grant
Canada-Mexico-USA Conference in Representation Theory, Noncommutative Algebra, and Categorification
加拿大-墨西哥-美国表示论、非交换代数和分类会议
- 批准号:
2205730 - 财政年份:2022
- 资助金额:
$ 16.9万 - 项目类别:
Standard Grant
Noncommutative Functions, Algebra and Operator Analysis
非交换函数、代数和算子分析
- 批准号:
2155033 - 财政年份:2022
- 资助金额:
$ 16.9万 - 项目类别:
Standard Grant
Recent Advances and New Directions in the Interplay of Noncommutative Algebra and Geometry
非交换代数与几何相互作用的最新进展和新方向
- 批准号:
1953148 - 财政年份:2020
- 资助金额:
$ 16.9万 - 项目类别:
Standard Grant
Expanding representation in Noncommutative Algebra and Representation Theory: WINART2 Workshop
扩展非交换代数和表示论中的表示:WINART2 研讨会
- 批准号:
1900575 - 财政年份:2019
- 资助金额:
$ 16.9万 - 项目类别:
Standard Grant
Reflection Groups in Noncommutative Algebra
非交换代数中的反射群
- 批准号:
2324043 - 财政年份:2019
- 资助金额:
$ 16.9万 - 项目类别:
Studentship
Recent Developments in Noncommutative Algebra and Related Areas
非交换代数及相关领域的最新进展
- 批准号:
1764210 - 财政年份:2018
- 资助金额:
$ 16.9万 - 项目类别:
Standard Grant