SHF: Medium: Programmability, Portability, Performance and Energy Efficiency for Heterogeneous Systems

SHF:中:异构系统的可编程性、可移植性、性能和能源效率

基本信息

  • 批准号:
    1302641
  • 负责人:
  • 金额:
    $ 89.98万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-09-01 至 2017-08-31
  • 项目状态:
    已结题

项目摘要

To maximize energy efficiency, future mobile devices will include a diverse range of hardware, such as large and small general-purpose processor cores, vector units, graphics processing units (GPUs), digital signal processors (DSPs), and semi-custom and custom accelerator cores. This "heterogeneity" could power a new wave of innovation in mobile computing but is blocked by several fundamental challenges. Some of the biggest challenges are that such heterogeneous systems are highly challenging to program; that it is very difficult for software applications that use the diverse hardware to be portable across different mobile devices; that the memory systems in these devices are inflexible and inefficient; and that the semi-custom and custom accelerators are poorly integrated with the rest of the memory system and the programming environments.A key insight behind this project is that a carefully designed hardware abstraction layer --- a "Virtual Instruction Set" --- that abstracts away the differences in parallelism and memory subsystems across the different compute units can provide a framework in which all of the above interrelated problems can be solved extremely effectively. The project is developing a framework called Virtual Instruction Set Computing that uses this approach to address the above challenges. The framework uses just two or three models of parallelism and a uniform, rich model of communication to capture the full spectrum of heterogeneous hardware. The hardware memory architecture supports specialized memory sub-systems and novel memory optimizations customized for those sub-systems, while compilers partition the memory used by applications to make use of these partitions; together, these specialization techniques will provide an order of magnitude improvement in memory efficiency. Semi-custom accelerators for the key domain of Machine Learning are driving new programming and memory system design techniques to integrate and use semi-custom accelerators in such systems. The overall research builds on the widely used LLVM virtual instruction set and compiler infrastructure (previously developed by members of this research team), which are already widely used in industry, enhancing the potential for technology transfer from this work. If this project is successful, it can enable far more powerful mobile phones, tablets, and other such devices, and far more advanced software applications that can make full use of the rich capabilities of these devices.
为了最大限度地提高能效,未来的移动的设备将包括各种硬件,例如大型和小型通用处理器内核、矢量单元、图形处理单元(GPU)、数字信号处理器(DSP)以及半定制和定制加速器内核。 这种“异质性”可能会推动移动的计算领域的新一轮创新,但却受到几个基本挑战的阻碍。一些最大的挑战是,这种异构系统对编程是高度挑战性的;使用不同硬件的软件应用程序很难在不同的移动的设备上是可移植的;这些设备中的存储器系统是不灵活的和低效的;而半-自定义和自定义加速器与内存系统和编程环境的其余部分集成得很差。设计的硬件抽象层---“虚拟指令集”---抽象出不同计算单元之间的并行性和存储器子系统的差异,可以提供一个框架,在这个框架中,所有上述相互关联的问题都可以非常有效地解决。该项目正在开发一个名为虚拟指令集计算的框架,该框架使用这种方法来解决上述挑战。该框架仅使用两到三种并行模型和一个统一的、丰富的通信模型来捕获异构硬件的全部频谱。 硬件内存架构支持专门的内存子系统和为这些子系统定制的新颖内存优化,而编译器则对应用程序使用的内存进行分区以利用这些分区;这些专门化技术将一起提供内存效率的数量级改进。 机器学习关键领域的半定制加速器正在推动新的编程和内存系统设计技术,以在此类系统中集成和使用半定制加速器。 整个研究建立在广泛使用的LLVM虚拟指令集和编译器基础设施(以前由该研究团队成员开发)的基础上,这些基础设施已经在工业中广泛使用,从而增强了这项工作的技术转移潜力。如果这个项目成功,它可以使更强大的移动的手机,平板电脑和其他此类设备,以及更先进的软件应用程序,可以充分利用这些设备的丰富功能。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Vikram Adve其他文献

Simplifying Control Flow in Compiler-Generated Parallel Code

Vikram Adve的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Vikram Adve', 18)}}的其他基金

TWC: Small: Trustworthy Code Generation for the LLVM Compiler Infrastructure
TWC:小型:LLVM 编译器基础设施的可信代码生成
  • 批准号:
    1619275
  • 财政年份:
    2016
  • 资助金额:
    $ 89.98万
  • 项目类别:
    Standard Grant
CSR: Medium: Augmenting Logs with Static Analysis and Symbolic Execution
CSR:中:通过静态分析和符号执行增强日志
  • 批准号:
    1564274
  • 财政年份:
    2016
  • 资助金额:
    $ 89.98万
  • 项目类别:
    Continuing Grant
CSR: Small: Automated Software Fault Localization via Static and Dynamic Analysis
CSR:小型:通过静态和动态分析自动软件故障定位
  • 批准号:
    1219080
  • 财政年份:
    2012
  • 资助金额:
    $ 89.98万
  • 项目类别:
    Standard Grant
General Language Mechanisms for Deterministic Parallel Programming
确定性并行编程的通用语言机制
  • 批准号:
    0702724
  • 财政年份:
    2007
  • 资助金额:
    $ 89.98万
  • 项目类别:
    Standard Grant
CSR-AES: Language, Compiler and Run-time Support for Irregular Applications in Emerging High-productivity Languages
CSR-AES:新兴高生产力语言中不规则应用程序的语言、编译器和运行时支持
  • 批准号:
    0720772
  • 财政年份:
    2007
  • 资助金额:
    $ 89.98万
  • 项目类别:
    Continuing Grant
CRI: CRD: A Compiler-Based Virtual Machine Infrastructure for System Software
CRI:CRD:基于编译器的系统软件虚拟机基础设施
  • 批准号:
    0709122
  • 财政年份:
    2007
  • 资助金额:
    $ 89.98万
  • 项目类别:
    Continuing Grant
CT-ISG: Improving System Security with a Compiler-based Virtual Machine for Operating System Kernels
CT-ISG:使用基于编译器的操作系统内核虚拟机提高系统安全性
  • 批准号:
    0716768
  • 财政年份:
    2007
  • 资助金额:
    $ 89.98万
  • 项目类别:
    Continuing Grant
Cooperative Hardware/Software Designs for Virtual Instruction Set Computers
虚拟指令集计算机的硬件/软件协同设计
  • 批准号:
    0429561
  • 财政年份:
    2004
  • 资助金额:
    $ 89.98万
  • 项目类别:
    Continuing Grant
NGS: CAREERS: Techniques and Applications of Dynamic Compilation
NGS:职业:动态编译的技术和应用
  • 批准号:
    0093426
  • 财政年份:
    2001
  • 资助金额:
    $ 89.98万
  • 项目类别:
    Continuing Grant
NGS: Collaborative Research: Performance Driven Adaptive Software Design and Control
NGS:协作研究:性能驱动的自适应软件设计和控制
  • 批准号:
    0103756
  • 财政年份:
    2001
  • 资助金额:
    $ 89.98万
  • 项目类别:
    Continuing Grant

相似海外基金

Collaborative Research: CyberTraining: Implementation: Medium: Training Users, Developers, and Instructors at the Chemistry/Physics/Materials Science Interface
协作研究:网络培训:实施:媒介:在化学/物理/材料科学界面培训用户、开发人员和讲师
  • 批准号:
    2321102
  • 财政年份:
    2024
  • 资助金额:
    $ 89.98万
  • 项目类别:
    Standard Grant
RII Track-4:@NASA: Bluer and Hotter: From Ultraviolet to X-ray Diagnostics of the Circumgalactic Medium
RII Track-4:@NASA:更蓝更热:从紫外到 X 射线对环绕银河系介质的诊断
  • 批准号:
    2327438
  • 财政年份:
    2024
  • 资助金额:
    $ 89.98万
  • 项目类别:
    Standard Grant
Collaborative Research: Topological Defects and Dynamic Motion of Symmetry-breaking Tadpole Particles in Liquid Crystal Medium
合作研究:液晶介质中对称破缺蝌蚪粒子的拓扑缺陷与动态运动
  • 批准号:
    2344489
  • 财政年份:
    2024
  • 资助金额:
    $ 89.98万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Medium: The Communication Cost of Distributed Computation
合作研究:AF:媒介:分布式计算的通信成本
  • 批准号:
    2402836
  • 财政年份:
    2024
  • 资助金额:
    $ 89.98万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: Foundations of Oblivious Reconfigurable Networks
合作研究:AF:媒介:遗忘可重构网络的基础
  • 批准号:
    2402851
  • 财政年份:
    2024
  • 资助金额:
    $ 89.98万
  • 项目类别:
    Continuing Grant
Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
  • 批准号:
    2403122
  • 财政年份:
    2024
  • 资助金额:
    $ 89.98万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
  • 批准号:
    2403134
  • 财政年份:
    2024
  • 资助金额:
    $ 89.98万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
  • 批准号:
    2402804
  • 财政年份:
    2024
  • 资助金额:
    $ 89.98万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
  • 批准号:
    2402815
  • 财政年份:
    2024
  • 资助金额:
    $ 89.98万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
  • 批准号:
    2403408
  • 财政年份:
    2024
  • 资助金额:
    $ 89.98万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了