Statistical Physics of Brain Networks

脑网络的统计物理

基本信息

  • 批准号:
    1305476
  • 负责人:
  • 金额:
    $ 37.94万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-09-15 至 2017-08-31
  • 项目状态:
    已结题

项目摘要

In this project the PIs will develop a theoretical framework to understand information processing in brain networks. The theoretical developments will be tested with experiments done in the collaborating lab of Canals (Alicante) by observation of the hemodynamic and electrical neural activity in animal with micro-electric stimulation in in-vivo animal experiments. A vast corpus of theoretical analysis and experimental data will serve to analyze the brain as a network of networks. This will involve a novel theoretical framework conceived to robustly determine how modules dynamically form and share information at different scales. The network analysis will reveal the brain nodes that are essential to control brain functionality in terms of super-spreaders and super-inhibitor nodes, cascading effects, robustness and vulnerability to node failure. The mathematical framework of the PIs challenges current thinking regarding the functional structure of the brain as a small-world and scale-free network, which is defined by short paths, large local clustering and a single degree distribution. Small-world networks have been proposed to solve a basic conundrum: the brain needs to form modules which ought to be sufficiently independent to guarantee functional specialization and sufficiently connected to bind multiple processors for efficient information transfer. However, this structure presents an intrinsic tension between shortcuts generating small-worlds and the persistence of modularity; a global property unrelated to local clustering. In this project the PIs depart from the current thinking in brain functional structure, replacing the concept of small-world by that of hierarchical Networks of Networks that describes the brain as a set of hierarchical modules made of weak/strong links. The broader significance of the proposed theory for the large-scale organization of the brain extends the mathematical theory of networks to radically novel information processing systems. The findings from this research will have implications, not only for systems neuroscience, but also for a number of complex systems ranging from technological, social to biological networks. This proposal represents a symbiosis between the labs of two physicists with expertise in statistical physics and complex networks and a neuroscientist. Such a setting will provide interdisciplinary and international opportunities to students involved in this project. Further broader educational impacts include involvement of underrepresented minority students from CCNY and curriculum development.
在这个项目中,PI 将开发一个理论框架来理解大脑网络中的信息处理。理论进展将通过 Canals 合作实验室(阿利坎特)进行的实验进行测试,通过体内动物实验中微电刺激观察动物的血流动力学和电神经活动。大量的理论分析和实验数据将有助于将大脑作为网络的网络进行分析。这将涉及一个新颖的理论框架,旨在稳健地确定模块如何在不同规模下动态形成和共享信息。网络分析将揭示控制大脑功能所必需的大脑节点,包括超级传播者和超级抑制者节点、级联效应、鲁棒性和节点故障的脆弱性。 PI 的数学框架挑战了当前关于大脑功能结构作为小世界和无标度网络的想法,该网络由短路径、大局部聚类和单度分布定义。小世界网络被提出来解决一个基本难题:大脑需要形成模块,这些模块应该足够独立以保证功能专业化,并充分连接以绑定多个处理器以实现有效的信息传输。然而,这种结构在生成小世界的捷径与模块化的持久性之间呈现出内在的张力。与局部聚类无关的全局属性。在这个项目中,PI 背离了当前大脑功能结构的思维,用分层网络网络的概念取代了小世界的概念,将大脑描述为一组由弱/强链接组成的分层模块。所提出的大脑大规模组织理论的更广泛意义是将网络数学理论扩展到全新的信息处理系统。这项研究的结果不仅对系统神经科学产生影响,而且对从技术、社会到生物网络等许多复杂系统也产生影响。该提案代表了两位拥有统计物理学和复杂网络专业知识的物理学家与一位神经科学家的实验室之间的共生。这样的环境将为参与该项目的学生提供跨学科和国际化的机会。更广泛的教育影响包括 CCNY 代表性不足的少数族裔学生的参与和课程开发。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hernan Makse其他文献

Fibration symmetry-breaking supports functional transitions in a brain network engaged in language
纤维化对称性破坏支持参与语言的大脑网络的功能转换
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hernan Makse;Tommaso Gili;Bryant Avila;Luca Pasquini;Andrei Holodny;David Phillips;Paolo Boldi;Andrea Gabrielli;Guido Caldarelli;Manuel Zimmer
  • 通讯作者:
    Manuel Zimmer

Hernan Makse的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hernan Makse', 18)}}的其他基金

Collaborative Research: HNDS-R: Dynamics and Mechanisms of Information Spread via Social Media
合作研究:HNDS-R:社交媒体信息传播的动力学和机制
  • 批准号:
    2214217
  • 财政年份:
    2022
  • 资助金额:
    $ 37.94万
  • 项目类别:
    Standard Grant
EAGER: Search for Optimal Packings
EAGER:寻找最佳填料
  • 批准号:
    1945909
  • 财政年份:
    2019
  • 资助金额:
    $ 37.94万
  • 项目类别:
    Standard Grant
CRCNS: Targeted Stimulations in Brain Network of Networks
CRCNS:大脑网络网络的定向刺激
  • 批准号:
    1515022
  • 财政年份:
    2015
  • 资助金额:
    $ 37.94万
  • 项目类别:
    Continuing Grant
Studies of random packings of non-spherical objects
非球形物体随机堆积的研究
  • 批准号:
    1308235
  • 财政年份:
    2013
  • 资助金额:
    $ 37.94万
  • 项目类别:
    Continuing Grant
Statistical Analysis of Jammed Matter
堵塞物统计分析
  • 批准号:
    0907004
  • 财政年份:
    2009
  • 资助金额:
    $ 37.94万
  • 项目类别:
    Continuing Grant
Mathematical Frameworks for Biological Modular Networks
生物模块化网络的数学框架
  • 批准号:
    0827508
  • 财政年份:
    2008
  • 资助金额:
    $ 37.94万
  • 项目类别:
    Standard Grant
Dynamics of Social Networks
社交网络的动态
  • 批准号:
    0624116
  • 财政年份:
    2007
  • 资助金额:
    $ 37.94万
  • 项目类别:
    Standard Grant
CAA: Self-organization and Robustness in Evolving Biological Networks
CAA:进化生物网络中的自组织和鲁棒性
  • 批准号:
    0615660
  • 财政年份:
    2006
  • 资助金额:
    $ 37.94万
  • 项目类别:
    Standard Grant
CAREER: Statistical Mechanics of Particulate Systems Far from Equilibrium
职业:远离平衡的颗粒系统的统计力学
  • 批准号:
    0239504
  • 财政年份:
    2003
  • 资助金额:
    $ 37.94万
  • 项目类别:
    Continuing Grant

相似国自然基金

Understanding complicated gravitational physics by simple two-shell systems
  • 批准号:
    12005059
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
Chinese Physics B
  • 批准号:
    11224806
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Science China-Physics, Mechanics & Astronomy
  • 批准号:
    11224804
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Frontiers of Physics 出版资助
  • 批准号:
    11224805
  • 批准年份:
    2012
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目
Chinese physics B
  • 批准号:
    11024806
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

CRCNS: Waste-clearance flows in the brain measured using physics-informed neural network
CRCNS:使用物理信息神经网络测量大脑中的废物清除流量
  • 批准号:
    10706594
  • 财政年份:
    2022
  • 资助金额:
    $ 37.94万
  • 项目类别:
CRCNS: Waste-clearance flows in the brain measured using physics-informed neural network
CRCNS:使用物理信息神经网络测量大脑中的废物清除流量
  • 批准号:
    10613222
  • 财政年份:
    2022
  • 资助金额:
    $ 37.94万
  • 项目类别:
LEAP-HI: Tackling Brain Diseases with Mechanics: A Data-Driven Approach to Merge Advanced Neuroimaging and Multi-Physics Modeling
LEAP-HI:用力学解决脑部疾病:一种融合先进神经成像和多物理场建模的数据驱动方法
  • 批准号:
    2227232
  • 财政年份:
    2022
  • 资助金额:
    $ 37.94万
  • 项目类别:
    Standard Grant
LEAP-HI: Tackling Brain Diseases with Mechanics: A Data-Driven Approach to Merge Advanced Neuroimaging and Multi-Physics Modeling
LEAP-HI:用力学解决脑部疾病:一种融合先进神经成像和多物理场建模的数据驱动方法
  • 批准号:
    1953323
  • 财政年份:
    2020
  • 资助金额:
    $ 37.94万
  • 项目类别:
    Standard Grant
Analysis of brain microcircuitry with statistical physics and machine learning tools
使用统计物理和机器学习工具分析大脑微电路
  • 批准号:
    522729-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 37.94万
  • 项目类别:
    Engage Grants Program
MRI: Development of a Pulsed Laser Source for Deep in Vivo Imaging, a Synergy of Physics and Brain Science
MRI:开发用于深部体内成像的脉冲激光源,物理学和脑科学的协同作用
  • 批准号:
    1532264
  • 财政年份:
    2015
  • 资助金额:
    $ 37.94万
  • 项目类别:
    Standard Grant
Nonlinear Physics of Vision as An Emerging Function of Brain and Its Applications
视觉作为大脑新兴功能的非线性物理学及其应用
  • 批准号:
    24240037
  • 财政年份:
    2012
  • 资助金额:
    $ 37.94万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Structural properties of random tree models and their applications in network flows, brain circulation networks and statistical physics
随机树模型的结构特性及其在网络流、脑循环网络和统计物理中的应用
  • 批准号:
    1105581
  • 财政年份:
    2011
  • 资助金额:
    $ 37.94万
  • 项目类别:
    Standard Grant
U.S.-Argentina Program: Workshop on Brain Physics; Mar del Plata, Argentina; December 2006
美国-阿根廷项目:脑物理学研讨会;
  • 批准号:
    0624982
  • 财政年份:
    2006
  • 资助金额:
    $ 37.94万
  • 项目类别:
    Standard Grant
Physics of Self-Organization: From Space Plasmas to Brain Dynamics
自组织物理学:从空间等离子体到大脑动力学
  • 批准号:
    FF0348240
  • 财政年份:
    2003
  • 资助金额:
    $ 37.94万
  • 项目类别:
    Federation Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了