Dynamics of Social Networks
社交网络的动态
基本信息
- 批准号:0624116
- 负责人:
- 金额:$ 68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-03-01 至 2010-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Uncovering the complex pattern that stems from the interactions among the members of a society is a complicated task. Societies tend to organize themselves in a modular manner, where the constituent block may be a family, a company, a city, etc. The identification of the dynamical rules of formation of these modules can be a very difficult task, since the definition of these modules depends on the ``scale'' at which the network is analyzed. The researchers intend to introduce a statistical method (the so-called self-similar measure) based on partitioning a complex network with successively larger tiles in order to unravel the modular structure of social networks and study the dependence of these modules on the scale of observation. In this way, they will study whether the dynamical evolution of modules, and then modules of modules and so on, behave in a similar way. It is, also, well known that the multitude of social interactions may create networks with different properties in a society. According to preliminary results, some types of social networks follow this self-similarity in their characteristics, while others do not. The researchers will classify the available social networks according to the self-similarity property and study how modules emerge in a population. The importance of this modularity will then be highlighted in important applications, such as the implications for the efficiency of immunization efforts. This project involves a number of different datasets, gathered through international collaborations, that represent the state-of-the-art in the field, both in terms of size and accuracy. By applying mathematical tools to the social networks studying the described properties, the researchers aim to reach conclusions that will be of mutual interest to sociologists and physicists.
揭示一个社会成员之间互动的复杂模式是一项复杂的任务。社会倾向于以模块化的方式组织自己,其中的组成块可能是一个家庭,一个公司,一个城市等,这些模块的形成的动态规则的识别可能是一项非常困难的任务,因为这些模块的定义取决于网络分析的“规模”。 研究人员打算引入一种统计方法(所谓的自相似测度),该方法基于用连续更大的瓦片划分复杂网络,以揭示社交网络的模块结构,并研究这些模块对观察尺度的依赖性。通过这种方式,他们将研究模块的动态演化,然后是模块的模块等等,是否以类似的方式表现。同样,众所周知,大量的社会互动可能会在社会中创建具有不同属性的网络。根据初步结果,某些类型的社交网络在其特征上遵循这种自相似性,而另一些则没有。研究人员将根据自相似性对现有的社交网络进行分类,并研究模块如何在人群中出现。 这种模块化的重要性将在重要的应用中得到强调,例如对免疫工作效率的影响。 该项目涉及通过国际合作收集的许多不同的数据集,这些数据集在规模和准确性方面都代表了该领域的最新技术水平。 通过将数学工具应用于社交网络,研究人员旨在得出社会学家和物理学家共同感兴趣的结论。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hernan Makse其他文献
Fibration symmetry-breaking supports functional transitions in a brain network engaged in language
纤维化对称性破坏支持参与语言的大脑网络的功能转换
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Hernan Makse;Tommaso Gili;Bryant Avila;Luca Pasquini;Andrei Holodny;David Phillips;Paolo Boldi;Andrea Gabrielli;Guido Caldarelli;Manuel Zimmer - 通讯作者:
Manuel Zimmer
Hernan Makse的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hernan Makse', 18)}}的其他基金
Collaborative Research: HNDS-R: Dynamics and Mechanisms of Information Spread via Social Media
合作研究:HNDS-R:社交媒体信息传播的动力学和机制
- 批准号:
2214217 - 财政年份:2022
- 资助金额:
$ 68万 - 项目类别:
Standard Grant
CRCNS: Targeted Stimulations in Brain Network of Networks
CRCNS:大脑网络网络的定向刺激
- 批准号:
1515022 - 财政年份:2015
- 资助金额:
$ 68万 - 项目类别:
Continuing Grant
Studies of random packings of non-spherical objects
非球形物体随机堆积的研究
- 批准号:
1308235 - 财政年份:2013
- 资助金额:
$ 68万 - 项目类别:
Continuing Grant
Mathematical Frameworks for Biological Modular Networks
生物模块化网络的数学框架
- 批准号:
0827508 - 财政年份:2008
- 资助金额:
$ 68万 - 项目类别:
Standard Grant
CAA: Self-organization and Robustness in Evolving Biological Networks
CAA:进化生物网络中的自组织和鲁棒性
- 批准号:
0615660 - 财政年份:2006
- 资助金额:
$ 68万 - 项目类别:
Standard Grant
CAREER: Statistical Mechanics of Particulate Systems Far from Equilibrium
职业:远离平衡的颗粒系统的统计力学
- 批准号:
0239504 - 财政年份:2003
- 资助金额:
$ 68万 - 项目类别:
Continuing Grant
相似国自然基金
小型类人猿合唱节奏的功能假说——宣
示社会关系(Social bond
advertising) ——验证研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
Behavioral Insights on Cooperation in Social Dilemmas
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国优秀青年学者研究基金项目
Navigating Sustainability: Understanding Environm ent,Social and Governanc e Challenges and Solution s for Chinese Enterprises
in Pakistan's CPEC Framew
ork
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
多语言环境下Social Tagging的内涵机理与应用框架研究-基于比较的视角
- 批准号:71103203
- 批准年份:2011
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Spatiotemporal Dynamics of Mitochondrial Populations: from Social to Physical Networks
线粒体群体的时空动态:从社会网络到物理网络
- 批准号:
2310229 - 财政年份:2023
- 资助金额:
$ 68万 - 项目类别:
Continuing Grant
Malware in Online Social Networks: Modeling of Propagation Dynamics and Countermeasures
在线社交网络中的恶意软件:传播动力学建模和对策
- 批准号:
RGPIN-2018-05911 - 财政年份:2022
- 资助金额:
$ 68万 - 项目类别:
Discovery Grants Program - Individual
Studying Human Dynamics at a Massive Scale: The Development and Assessment of a Distributed Approach for Effective Visualization of 100+ Million-Node Social Networks
大规模研究人类动力学:一亿节点社交网络有效可视化分布式方法的开发和评估
- 批准号:
RGPIN-2019-05617 - 财政年份:2022
- 资助金额:
$ 68万 - 项目类别:
Discovery Grants Program - Individual
Studying Human Dynamics at a Massive Scale: The Development and Assessment of a Distributed Approach for Effective Visualization of 100+ Million-Node Social Networks
大规模研究人类动力学:一亿节点社交网络有效可视化分布式方法的开发和评估
- 批准号:
RGPIN-2019-05617 - 财政年份:2021
- 资助金额:
$ 68万 - 项目类别:
Discovery Grants Program - Individual
Understanding Social Dynamics Through Coevolving Latent Space Networks With Attractors
通过与吸引子共同演化的潜在空间网络来理解社会动态
- 批准号:
2120115 - 财政年份:2021
- 资助金额:
$ 68万 - 项目类别:
Standard Grant
Malware in Online Social Networks: Modeling of Propagation Dynamics and Countermeasures
在线社交网络中的恶意软件:传播动力学建模和对策
- 批准号:
RGPIN-2018-05911 - 财政年份:2021
- 资助金额:
$ 68万 - 项目类别:
Discovery Grants Program - Individual
Studying Human Dynamics at a Massive Scale: The Development and Assessment of a Distributed Approach for Effective Visualization of 100+ Million-Node Social Networks
大规模研究人类动力学:一亿节点社交网络有效可视化分布式方法的开发和评估
- 批准号:
RGPIN-2019-05617 - 财政年份:2020
- 资助金额:
$ 68万 - 项目类别:
Discovery Grants Program - Individual
EAGER: Integrating animal movement ecology and multi-level social networks to investigate zoonotic disease dynamics
EAGER:整合动物运动生态学和多层次社交网络来研究人畜共患疾病动态
- 批准号:
2039769 - 财政年份:2020
- 资助金额:
$ 68万 - 项目类别:
Standard Grant
Malware in Online Social Networks: Modeling of Propagation Dynamics and Countermeasures
在线社交网络中的恶意软件:传播动力学建模和对策
- 批准号:
RGPIN-2018-05911 - 财政年份:2020
- 资助金额:
$ 68万 - 项目类别:
Discovery Grants Program - Individual
Studying Human Dynamics at a Massive Scale: The Development and Assessment of a Distributed Approach for Effective Visualization of 100+ Million-Node Social Networks
大规模研究人类动力学:一亿节点社交网络有效可视化分布式方法的开发和评估
- 批准号:
RGPIN-2019-05617 - 财政年份:2019
- 资助金额:
$ 68万 - 项目类别:
Discovery Grants Program - Individual