Fundamental Studies on Transport of Ions and Large Penetrants Through Structured Polymer Matrices
通过结构化聚合物基质传输离子和大渗透剂的基础研究
基本信息
- 批准号:1306844
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-01 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Technical SummaryThis award supports theoretical research and education on polymeric membranes possessing both enhanced mechanical and electrochemical properties. Recent experiments aiming to develop polymeric membranes with these properties explore a variety of strategies, including cross-linking of the conductive homopolymers, use of inorganic fillers to create polymer nanocomposite membranes, and using diblock copolymers in which a mechanically strong block complements the conducting phase. While mechanical properties can be enhanced by such means, intriguing observations have also been noted in the dependencies of transport properties upon the physicochemical parameters that characterize these modified polymer membranes.Motivated to understand the transport properties, the PI plans to study the physics of diffusion processes involving ions and large molecule penetrants in two broad classes of systems: (i) Polymer membranes containing nanoparticulate fillers: the PI aims to use a hybrid simulation approach combining atomistic level molecular dynamics with a coarse-grained kinetic Monte Carlo approach to probe the mechanistic origins of the behavior of the conductivity of polymer nanocomposite membranes. The PI will use such a simulation approach to interrogate the filler-induced modifications to the ion motion, complexation and polymer motion, and to unravel the roles of the polymer-filler interactions and particle concentrations; (ii) Nanostructured/self-assembled block copolymer membranes: The PI plans to use a coarse-grained bond fluctuation Monte Carlo simulation approach to probe the mechanistic underpinnings of the behavior of the conductivity and transport properties of block copolymer membranes. In particular, the PI proposes to use simulations within the context of a non-charged, selective solvent representation of the ion to unravel the interplay between ion motion, polymer dynamics, the morphology of self-assembly, and composition fluctuations upon the macroscopic transport properties of the membrane. This research is expected to result in a better understanding of the mechanisms underlying ion and large molecule penetrant diffusion in such structured and inhomogeneous polymeric matrices. Advances in computational approaches and theoretical models for studying ionic and penetrant transport using atomistic and coarse-grained simulations will be made in the course of this project. Resulting methods may also have applications to fuel cells and water purification membranes.The educational broader impacts are integrated with research aims, and include opportunities for undergraduate researchers to participate in this project with an aim to include students from community colleges. An international workshop devoted to fundamental aspects of coarse-graining the equilibrium and dynamical aspects of soft-matter systems will also be organized.Non-Technical SummaryThis award supports theoretical research and education that can contribute to developing improved batteries and fuel cells. Electrochemical devices such as batteries and fuel cells have recently become popular in the quest for clean and sustainable energy sources. Many present-day batteries involve the presence of a liquid electrolyte which serves to conduct ions between the positively charged terminal and the negatively charged terminal. However, the presence of this liquid component leads to potential safety issues. To enhance safety, researchers seek to develop conducting media, electrolytes, which are non-flammable but still ensure efficient operation of the batteries. In this context, plastics have emerged as potential candidates. However, it remains a challenge to design plastic materials that are strong enough and have properties that lead to efficient battery operation.The PI will develop computer-based tools to investigate new classes of polymeric materials which have been demonstrated to possess properties desirable for batteries. The computer-based tools will provide means to interrogate the operation of the polymeric materials and thereby suggest directions for designing new materials with better and improved properties. The tools developed in this project are can be adapted to study other renewable energy options such as fuel cells and the operation of water purification membranes. This project will create new research opportunities for both undergraduate and graduate students to study the newly emerging classes of materials and thereby suggest strategies for improving their properties. Moreover, new courses and demonstration modules will be designed to educate students and the public on the principles underlying devices such as fuel cells, batteries, and solar cells.
技术总结该奖项支持具有增强的机械和电化学性能的聚合物膜的理论研究和教育。最近旨在开发具有这些特性的聚合物膜的实验探索了各种策略,包括导电均聚物的交联、使用无机填料来产生聚合物纳米复合膜以及使用机械强度强的嵌段补充导电相的二嵌段共聚物。虽然机械性能可以通过这种方法得到增强,但在传输性能对表征这些改性聚合物膜的物理化学参数的依赖性方面也注意到了有趣的观察结果。为了了解传输性能,PI计划研究两大类系统中涉及离子和大分子反渗透剂的扩散过程的物理学:(i)含有纳米颗粒填料的聚合物膜:PI旨在使用结合原子级分子动力学和粗粒动力学Monte Carlo方法的混合模拟方法,以探测聚合物纳米复合材料膜的导电性行为的机理起源。PI将使用这种模拟方法来询问填料诱导的离子运动、络合和聚合物运动的改变,并阐明聚合物-填料相互作用和颗粒浓度的作用;(ii)纳米结构/自组装嵌段共聚物膜:私家侦探计划用一个粗糙的-颗粒键涨落蒙特卡罗模拟方法来探讨嵌段共聚物膜的导电性和传输性能的行为的机理基础。 特别是,PI建议使用模拟的背景下,一个不带电的,选择性的溶剂表示的离子解开离子运动,聚合物动力学,自组装的形态和组成波动的宏观传输性能的膜之间的相互作用。 这项研究预计将导致更好地了解离子和大分子渗透剂在这种结构和不均匀的聚合物基体中扩散的机制。本项目将在利用原子和粗粒模拟研究离子和渗透剂输运的计算方法和理论模型方面取得进展。由此产生的方法也可能有应用到燃料电池和水净化membranes.The教育更广泛的影响与研究目标相结合,并包括本科生研究人员参与这个项目的机会,旨在包括来自社区学院的学生。还将组织一次国际研讨会,专门讨论软物质系统的平衡和动力学方面的粗粒化的基本方面。非技术性总结该奖项支持有助于开发改进型电池和燃料电池的理论研究和教育。电化学装置如电池和燃料电池近来在寻求清洁和可持续能源方面变得流行。许多现今的电池涉及液体电解质的存在,其用于在带正电荷的端子和带负电荷的端子之间传导离子。然而,这种液体组分的存在导致潜在的安全问题。为了提高安全性,研究人员试图开发导电介质,电解质,这是不易燃的,但仍然确保电池的有效运行。在这种情况下,塑料已成为潜在的候选者。然而,设计足够坚固的塑料材料并使其具有高效电池运行的特性仍然是一个挑战。PI将开发基于计算机的工具,以研究已被证明具有电池所需特性的新型聚合物材料。基于计算机的工具将提供询问聚合物材料的操作的手段,从而为设计具有更好和改进的性能的新材料提供方向。该项目中开发的工具可用于研究其他可再生能源选择,如燃料电池和水净化膜的操作。该项目将为本科生和研究生创造新的研究机会,研究新出现的材料类别,从而提出改善其性能的策略。此外,还将设计新的课程和演示模块,以教育学生和公众了解燃料电池、蓄电池和太阳能电池等设备的基本原理。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Venkat Ganesan其他文献
Conductivity and Transference Numbers in Lithium Salt-Doped Block Copolymeric Ionic Liquid Electrolytes
锂盐掺杂嵌段共聚物离子液体电解质的电导率和迁移数
- DOI:
10.1021/acs.macromol.3c01791 - 发表时间:
2023 - 期刊:
- 影响因子:5.5
- 作者:
Zidan Zhang;Jakub Krajniak;Jacob Sass;H. S. Sachar;Nico Marioni;Tyler J Duncan;Venkat Ganesan - 通讯作者:
Venkat Ganesan
Mechanical and Viscoelastic Properties of Polymer-Grafted Nanorod Composites from Molecular Dynamics Simulation
分子动力学模拟聚合物接枝纳米棒复合材料的机械和粘弹性性能
- DOI:
10.1021/acs.macromol.8b00183 - 发表时间:
2018 - 期刊:
- 影响因子:5.5
- 作者:
Jianxiang Shen;Xue Li;Liqun Zhang;Xiangsong Lin;Haidong Li;Xiaojun Shen;Venkat Ganesan;Jun Liu - 通讯作者:
Jun Liu
Ion and Water Dynamics in the Transition from Dry to Wet Conditions in Salt-Doped PEG.
掺盐 PEG 中从干条件向湿条件转变的离子和水动力学。
- DOI:
10.1021/acsmacrolett.4c00046 - 发表时间:
2024 - 期刊:
- 影响因子:7.015
- 作者:
Nico Marioni;Oscar Nordness;Zidan Zhang;R. Sujanani;Benny D. Freeman;R. Segalman;R. Clément;Venkat Ganesan - 通讯作者:
Venkat Ganesan
Role of Dielectric Drag in Circumventing the Solubility-Diffusivity Trade-off in Zwitterionic Copolymer Membranes.
介电阻力在规避两性离子共聚物膜溶解度-扩散率权衡中的作用。
- DOI:
10.1021/acsmacrolett.3c00420 - 发表时间:
2023 - 期刊:
- 影响因子:7.015
- 作者:
H. S. Sachar;Zidan Zhang;Nico Marioni;Everett S. Zofchak;Venkat Ganesan - 通讯作者:
Venkat Ganesan
Venkat Ganesan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Venkat Ganesan', 18)}}的其他基金
Dynamical Ion Correlations in Polymer Electrolytes
聚合物电解质中的动态离子相关性
- 批准号:
2225167 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Nanoparticle Dynamics in Polymer Solutions and Melts
聚合物溶液和熔体中的纳米颗粒动力学
- 批准号:
1721512 - 财政年份:2017
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Collaborative Research: Block Copolymer Compatibilizers for Controlled Morphology and Interfacial Properties in Polymer-Fullerene Blends
合作研究:用于控制聚合物-富勒烯共混物形态和界面性质的嵌段共聚物增容剂
- 批准号:
1264583 - 财政年份:2013
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Phase-Behavior and Complexation in Polyelectrolyte -Particle Mixtures
聚电解质-颗粒混合物中的相行为和络合
- 批准号:
1005739 - 财政年份:2010
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
CAREER: A Multiscale Approach for the Flow Behavior of Inhomogeneous Multicomponent Polymeric Materials
职业:非均质多组分聚合物材料流动行为的多尺度方法
- 批准号:
0347381 - 财政年份:2004
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Interactions and Self-Assembly of Particles in Complex Fluids
复杂流体中颗粒的相互作用和自组装
- 批准号:
0204199 - 财政年份:2002
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
相似海外基金
Fundamental Studies of the Hydrogen Bond Enhanced Halogen Bond (HBeXB) for Molecular Folding and Anion Transport
氢键增强卤素键 (HBeXB) 用于分子折叠和阴离子传输的基础研究
- 批准号:
2004213 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Asymmetric Nanopores for Fundamental Studies of Hindered Transport
用于受阻运输基础研究的不对称纳米孔
- 批准号:
1033203 - 财政年份:2010
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Fundamental Studies of Solvation and Transport Phenomena in Liquids
液体中溶剂化和输运现象的基础研究
- 批准号:
1036464 - 财政年份:2010
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Fundamental Studies of Solvation and Transport Phenomena in Liquids
液体中溶剂化和输运现象的基础研究
- 批准号:
0719522 - 财政年份:2007
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CAREER: Fundamental studies of charge transport through alkali metal doped zeolite films
职业:碱金属掺杂沸石薄膜电荷传输的基础研究
- 批准号:
0645814 - 财政年份:2007
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Fundamental studies on multiphase flow in porous media: transport phenomena, interfacial effects, and pore structure
多孔介质中多相流的基础研究:传输现象、界面效应和孔隙结构
- 批准号:
250036-2002 - 财政年份:2005
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
NSF-EPSRC Materials Collaboration on Fundamental Surface Studies of Mixed Electronic and Ionically Conducting Materials for Fuel Cell and Ion Transport Membrane Applications
NSF-EPSRC 材料合作,开展燃料电池和离子传输膜应用混合电子和离子导电材料的基础表面研究
- 批准号:
0502740 - 财政年份:2005
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Fundamental Numerical Studies of Neutral and Ion Gas Transport in Ion-Spray, Gas-Curtain, and Free-Jet Flows
离子喷雾、气幕和自由射流中中性气体和离子气体传输的基础数值研究
- 批准号:
254794-2001 - 财政年份:2005
- 资助金额:
$ 30万 - 项目类别:
Collaborative Research and Development Grants
Fundamental Numerical Studies of Neutral and Ion Gas Transport in Ion-Spray, Gas-Curtain, and Free-Jet Flows
离子喷雾、气幕和自由射流中中性气体和离子气体传输的基础数值研究
- 批准号:
254794-2001 - 财政年份:2004
- 资助金额:
$ 30万 - 项目类别:
Collaborative Research and Development Grants
Fundamental studies on multiphase flow in porous media: transport phenomena, interfacial effects, and pore structure
多孔介质中多相流的基础研究:传输现象、界面效应和孔隙结构
- 批准号:
250036-2002 - 财政年份:2004
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




