Asymmetric Nanopores for Fundamental Studies of Hindered Transport
用于受阻运输基础研究的不对称纳米孔
基本信息
- 批准号:1033203
- 负责人:
- 金额:$ 29.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-01 至 2014-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1033203Wolden The objective of this research is to develop a simple approach for large area fabrication of asymmetric nanopores, which in turn will be employed for fundamental studies of hindered transport. The research will employ a new variant of pulsed plasma-enhanced chemical vapor deposition (PECVD) to digitally manipulate the openings of model supports. Pulsed PECVD has been engineered as an alternative to atomic layer deposition (ALD) for self-limiting growth of thin films (i.e. 1 Å/pulse). Through control of operating conditions the degree of conformality may be engineered, enabling digital control over pore closure without sacrificing the high porosity/permeability of the underlying supports. The well-defined geometry of the resulting nanopores will serve as model systems for fundamental studies of hindered transport. Well-characterized proteins and inorganic quantum dots will be explored as model solutes. Surface effects often dominate at the length scales in question. This issue will be investigated by using established self-assembly techniques to systematically manipulate the surface termination of both pores and nanoparticles. The basic precepts have been demonstrated in preliminary work using anodized alumina supports. However, these studies also revealed that the pore size distribution in these commercial supports was inadequate for control at the nanoscale. This limitation will be remedied by employing uniform silicon supports fabricated using e-beam lithography through a collaboration with the Center for Nanophase Materials Sciences at ORNL. Intellectual Merit The intellectual merit of this proposal is in nanopore fabrication, thin film deposition, and nanoscale transport phenomena. Existing approaches for nanopore synthesis employ energetic beam technologies that are not amenable to large scale fabrication. The PI's approach employs standard integrated circuit (IC) fabrication techniques and is performed at ambient temperature. Feature scale models will be developed to simulate pore closure by pulsed PECVD, and validated using cross section microscopy. The resulting nanopores will have well-defined cylindrical geometries, creating an ideal platform for rigorous evaluation of theoretical models of hindered transport. Experimental measurements of permeance and solute rejection will be used to test and improve understanding of transport at the nanoscale. Broader Impacts Large area synthesis of well-defined nanopores would be an enabling innovation for the separation of both biological constituents and nanoparticles. Moreover, the resulting channels will serve as an ideal platform for experimental investigations of nanofluidics. The coupling of nanofluidics with electrical manipulation of charged species such as ions and DNA offers a potential alternative to conventional IC technology. The use of silicon wafers as the support structure will facilitate the integration of nanopore arrays with conventional electronic and microfluidic components for Lab-on-a-Chip applications. The broader impacts also include the training of a PhD candidate and the engagement of undergraduate researchers in areas of great technological importance. The PI and his students will continue their work with the CSM K-12 outreach team, developing teacher workshop materials related to membranes and water purification for school districts with large populations of underrepresented students.
本研究的目的是开发一种用于大面积制造不对称纳米孔的简单方法,这反过来将用于阻碍传输的基础研究。该研究将采用脉冲等离子体增强化学气相沉积(PECVD)的一种新变体来数字操作模型支架的开口。脉冲PECVD已被设计为原子层沉积(ALD)的替代方案,用于薄膜的自我限制生长(即1 Å/脉冲)。通过控制操作条件,可以设计出符合度,在不牺牲底层支撑的高孔隙度/渗透率的情况下,实现对孔隙闭合的数字控制。由此产生的纳米孔的良好定义的几何结构将作为模型系统的基础研究受阻的运输。表征良好的蛋白质和无机量子点将作为模型溶质进行探索。表面效应通常在所讨论的长度尺度上占主导地位。这个问题将通过使用已建立的自组装技术来系统地操纵孔隙和纳米颗粒的表面终止来研究。使用阳极氧化铝支架的初步工作证明了基本原理。然而,这些研究也表明,这些商业支架的孔径分布不足以在纳米尺度上进行控制。通过与ORNL纳米材料科学中心的合作,采用电子束光刻技术制造的均匀硅支撑将弥补这一限制。这个提议的学术价值在于纳米孔的制造、薄膜的沉积和纳米尺度的传输现象。现有的纳米孔合成方法采用高能束技术,不适合大规模制造。PI的方法采用标准集成电路(IC)制造技术,并在环境温度下进行。将开发特征尺度模型来模拟脉冲PECVD的孔隙闭合,并使用截面显微镜进行验证。由此产生的纳米孔将具有明确的圆柱形几何形状,为阻碍运输的理论模型的严格评估创造了理想的平台。渗透和溶质排斥的实验测量将用于测试和提高对纳米尺度传输的理解。大面积合成定义良好的纳米孔将是生物成分和纳米颗粒分离的有利创新。此外,由此产生的通道将作为纳米流体实验研究的理想平台。纳米流体与带电物质(如离子和DNA)的电操纵的耦合为传统集成电路技术提供了一种潜在的替代方案。硅片作为支撑结构的使用将促进纳米孔阵列与传统电子和微流体元件的集成,用于芯片上的实验室应用。更广泛的影响还包括博士候选人的培训和在重要技术领域的本科生研究人员的参与。PI和他的学生将继续与CSM K-12外展小组合作,为有大量代表性不足的学生的学区开发与膜和水净化有关的教师讲习班材料。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Colin Wolden其他文献
Colin Wolden的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Colin Wolden', 18)}}的其他基金
Manufacturing of Metal Sulfides for Next Generation Batteries
用于下一代电池的金属硫化物的制造
- 批准号:
2219184 - 财政年份:2022
- 资助金额:
$ 29.29万 - 项目类别:
Standard Grant
Continuous Manufacturing of Anhydrous Metal Sulfide Nanocrystals
无水金属硫化物纳米晶体的连续制造
- 批准号:
1825470 - 财政年份:2018
- 资助金额:
$ 29.29万 - 项目类别:
Standard Grant
Addressing Unresolved Scientific Challenges for CdTe-based Solar Cells
解决 CdTe 太阳能电池未解决的科学挑战
- 批准号:
1706149 - 财政年份:2017
- 资助金额:
$ 29.29万 - 项目类别:
Standard Grant
UNS: Earth Abundant Membrane Reactors for Efficient Chemical Processing
UNS:地球资源丰富的膜反应器可实现高效化学处理
- 批准号:
1512172 - 财政年份:2015
- 资助金额:
$ 29.29万 - 项目类别:
Standard Grant
MRI: Acquisition of a coupled optical and scanning probe microscopy facility for advanced materials research
MRI:购买耦合光学和扫描探针显微镜设施用于先进材料研究
- 批准号:
1532179 - 财政年份:2015
- 资助金额:
$ 29.29万 - 项目类别:
Standard Grant
Synthesis of Stoichiometric Pyrite Photovoltaic Absorbers
化学计量黄铁矿光伏吸收剂的合成
- 批准号:
1207294 - 财政年份:2012
- 资助金额:
$ 29.29万 - 项目类别:
Continuing Grant
Catalyzing Innovation and Collaboration for Photovoltaics Research and Development: An NSF Workshop
促进光伏研究与开发的创新与合作:NSF 研讨会
- 批准号:
1027337 - 财政年份:2010
- 资助金额:
$ 29.29万 - 项目类别:
Standard Grant
Collaborative Research: A Diagnostic and Modeling Investigation of Pulsed PECVD
合作研究:脉冲 PECVD 的诊断和建模研究
- 批准号:
0829043 - 财政年份:2008
- 资助金额:
$ 29.29万 - 项目类别:
Standard Grant
High Throughput Manufacturing of Nanolaminates
纳米层压材料的高通量制造
- 批准号:
0826323 - 财政年份:2008
- 资助金额:
$ 29.29万 - 项目类别:
Standard Grant
An Investigation of the Heterogeneous Chemistry Occurring between Atoms and Organometallics during Thin Film Synthesis
薄膜合成过程中原子和有机金属之间发生的非均相化学研究
- 批准号:
0626226 - 财政年份:2006
- 资助金额:
$ 29.29万 - 项目类别:
Standard Grant
相似海外基金
Asymmetric Single-Chain MspA nanopores for electroosmotic stretching and sequencing proteins
用于电渗拉伸和蛋白质测序的不对称单链 MspA 纳米孔
- 批准号:
10646810 - 财政年份:2023
- 资助金额:
$ 29.29万 - 项目类别:
Probing the molecular interactions within carrier nanopores to enable model validation and deployment
探测载体纳米孔内的分子相互作用以实现模型验证和部署
- 批准号:
10061626 - 财政年份:2023
- 资助金额:
$ 29.29万 - 项目类别:
Collaborative R&D
Controlled Protein Translocation in Nanopores for Sequencing Applications
用于测序应用的纳米孔中的受控蛋白质易位
- 批准号:
10645979 - 财政年份:2023
- 资助金额:
$ 29.29万 - 项目类别:
Investigation of Protein Transport in Functionalized Polymeric Nanopores
功能化聚合物纳米孔中蛋白质运输的研究
- 批准号:
2345813 - 财政年份:2023
- 资助金额:
$ 29.29万 - 项目类别:
Standard Grant
Controlled Protein Translocation in Nanopores for Sequencing Applications
用于测序应用的纳米孔中的受控蛋白质易位
- 批准号:
10574679 - 财政年份:2023
- 资助金额:
$ 29.29万 - 项目类别:
DYnamic control in hybrid plasmonic NAnopores: road to next generation multiplexed single MOlecule detection
混合等离子体纳米孔的动态控制:下一代多重单分子检测之路
- 批准号:
EP/X038009/1 - 财政年份:2023
- 资助金额:
$ 29.29万 - 项目类别:
Research Grant
Making Nanopores for Single Molecule Studies with Tip Controlled Local Breakdown
通过尖端控制的局部分解制造用于单分子研究的纳米孔
- 批准号:
573740-2022 - 财政年份:2022
- 资助金额:
$ 29.29万 - 项目类别:
University Undergraduate Student Research Awards
Characterization of Solid-State Nanopores and Precision Measurement of Individual Proteins Using Logic-Driven Nanopore Devices
使用逻辑驱动纳米孔装置表征固态纳米孔并精确测量单个蛋白质
- 批准号:
569399-2022 - 财政年份:2022
- 资助金额:
$ 29.29万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Early detection of cancer biomarkers by 10x faster and 10x lower-concentration measurements using nanopores
使用纳米孔以 10 倍的速度和 10 倍的低浓度测量来早期检测癌症生物标志物
- 批准号:
EP/X023311/1 - 财政年份:2022
- 资助金额:
$ 29.29万 - 项目类别:
Research Grant