Dynamical Ion Correlations in Polymer Electrolytes
聚合物电解质中的动态离子相关性
基本信息
- 批准号:2225167
- 负责人:
- 金额:$ 39.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
NONTECHNICAL SUMMARY Because batteries play an ever-increasing role as mobile energy storage devices, our society demands the design of more powerful and yet operationally safe batteries. One pathway toward this demand is the search for new types of battery materials, highly conductive and yet resistant to heat and other stress factors that can cause safety issues. An attractive emerging candidate are thin sheets of charged polymeric material—known as polymer electrolytes—with plastic-like properties and yet allowing for the passage of lithium and other ions. Unfortunately, currently available polymer electrolytes still lack the conductivity required for the fast charging and discharging needs of present-day batteries. A key missing ingredient for designing better batteries is a predictive understanding of how ions move in charged polymeric materials. This project will seek to develop such an understanding by using computer simulations that precisely account for the chemical details of a class of polymers pursued for lithium-ion batteries. Based on the findings of these simulations, new polymeric designs for faster charging and reduced safety concerns will be identified and communicated to experimental researchers. The outcomes of this work will also be useful for proposing polymer materials that facilitate water purification from contaminating salts and extract elements such as lithium, a scarce domestic resource, from waste streams. The computer simulations and findings of this project will be integrated into course work and communicated to the next generation scientists and leaders. Furthermore, the project will engage high school and undergraduate researchers by making research experiences a part of their education. TECHNICAL SUMMARY Recently, considerable interest has arisen in the use of polymer electrolytes as materials for use in energy storage and water purification, separation applications. In many of these applications, a key performance metric relates to the selective optimization of the transport of a specific ion relative to the other ions present. In such contexts, many of the materials recently explored involve concentrated solution of ions, in which novel physics arises from the influence of (i.e. correlations between) dynamics of one or more of the ions on the motion of a different ion. In this project, the PI proposes a hypothesis driven plan which builds on novel experimental results reported by other groups and the research team’s preliminary simulation results, to shed light on the microscopic origins and the influence of dynamical ion correlations in two broad classes of problems: (a) Counterion transport in polymeric ionic liquids; and (b) Lithium ion transport in salt-doped polymeric ionic liquids. The PI proposes to use a combination of atomistic and coarse-grained simulations to validate the hypotheses regarding the mechanistic origin of dynamical ion correlations in such materials. The research team will use newly gained understanding to identify physicochemical parameters which exploit the dynamical correlations between ions to enable higher conductivities and/or transference numbers.The project will impact the development of battery electrolytes based on polymeric materials. Such advances are of relevance for building sustainable energy sources and economic independence from depleting oil and gas resources. The PI’s computer simulations and fundamental advances will be integrated within new course materials and outreach modules for undergraduate and graduate students to illustrate the physics of dry and hydrated polymer electrolytes. The PI will also organize a special focus session at the APS March meeting which will bring together researchers working on different aspects of this diverse field. Further, the research project will be used as a means to recruit and train undergraduate and high school researchers, with a special focus towards enhancing the diversity among computational materials science researchers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术总结由于电池作为移动储能设备的作用不断增加,因此我们的社会要求设计更强大但在操作中安全的电池。通往这种需求的一种途径是寻找新型的电池材料,高度导电材料,但对热量和其他可能导致安全问题的压力因素具有抵抗力。一个有吸引力的新兴候选者是带有带电的聚合物材料(称为聚合物电解质)的薄薄,具有塑料样性能,但允许锂和其他离子的通过。不幸的是,目前可用的聚合物电解质仍然缺乏当今电池快速充电和放电需求所需的电导率。设计更好的电池的主要缺失成分是对带电聚合物材料中离子如何移动的预测性理解。该项目将寻求通过使用计算机模拟来开发这种理解,这些计算机模拟准确地说明了用于锂离子电池的一类聚合物的化学细节。根据这些模拟的发现,将确定用于更快充电和减少安全问题的新聚合物设计,并将其传达给实验研究人员。这项工作的结果对于提出聚合物材料也将很有用,以促进污染盐和提取诸如稀缺的国内资源的元素中净化水的纯净材料,从废物流中。该项目的计算机模拟和发现将集成到课程工作中,并与下一代科学家和领导者进行通信。此外,该项目将通过使研究经验成为其教育的一部分来吸引高中和本科研究人员。最近的技术摘要最近,使用聚合物电解质作为用于储能和水纯化,分离应用的材料引起了很大的兴趣。在许多这些应用中,与存在的其他离子相对于存在的特定离子的传输的选择性优化相关的关键性能指标。在这种情况下,许多材料最近探索了涉及离子的浓缩溶液,其中新颖的物理学源于一种或多种离子对不同离子运动的动力学(即之间的相关性)的影响。在该项目中,PI提出了一个假设驱动计划,该计划基于其他小组报道的新型实验结果以及研究小组的初步模拟结果,以阐明显微镜的起源以及两个广泛的问题中动态离子相关的影响:(A)聚合物离子离子液体中的反离子转运; (b)含盐聚合物离子液体中的锂离子转运。 PI建议使用原子和粗粒模拟的组合来验证有关此类材料中动态离子相关性机械起源的假设。研究团队将使用新获得的理解来确定探索离子之间动态相关性的物理参数,以实现更高的电导率和/或传输数字。该项目将影响基于聚合物材料的电池电解质的开发。这些进步与建立可持续能源和脱离石油和天然气资源的经济独立性相关。 PI的计算机模拟和基本进步将集成到本科生和研究生的新课程材料和外展模块中,以说明干燥和水合的聚合物电解质的物理。 PI还将在APS 3月会议上组织一次特别的焦点会议,将研究人员聚集在该潜水场领域的各个方面。此外,该研究项目将被用作招募和培训本科和高中研究人员的一种手段,并特别关注。这项奖项反映了NSF的法定使命,并通过使用基金会的知识分子优点和更广泛的影响评论标准评估来提高计算材料科学研究人员之间的多样性。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Ion Correlations and Partial Ionicities in the Lamellar Phases of Block Copolymeric Ionic Liquids
嵌段共聚物离子液体层状相中的离子相关性和部分离子度
- DOI:10.1021/acsmacrolett.2c00401
- 发表时间:2022
- 期刊:
- 影响因子:7.015
- 作者:Zhang, Zidan;Sass, Jacob;Krajniak, Jakub;Ganesan, Venkat
- 通讯作者:Ganesan, Venkat
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Venkat Ganesan其他文献
Conductivity and Transference Numbers in Lithium Salt-Doped Block Copolymeric Ionic Liquid Electrolytes
锂盐掺杂嵌段共聚物离子液体电解质的电导率和迁移数
- DOI:
10.1021/acs.macromol.3c01791 - 发表时间:
2023 - 期刊:
- 影响因子:5.5
- 作者:
Zidan Zhang;Jakub Krajniak;Jacob Sass;H. S. Sachar;Nico Marioni;Tyler J Duncan;Venkat Ganesan - 通讯作者:
Venkat Ganesan
Mechanical and Viscoelastic Properties of Polymer-Grafted Nanorod Composites from Molecular Dynamics Simulation
分子动力学模拟聚合物接枝纳米棒复合材料的机械和粘弹性性能
- DOI:
10.1021/acs.macromol.8b00183 - 发表时间:
2018 - 期刊:
- 影响因子:5.5
- 作者:
Jianxiang Shen;Xue Li;Liqun Zhang;Xiangsong Lin;Haidong Li;Xiaojun Shen;Venkat Ganesan;Jun Liu - 通讯作者:
Jun Liu
Ion and Water Dynamics in the Transition from Dry to Wet Conditions in Salt-Doped PEG.
掺盐 PEG 中从干条件向湿条件转变的离子和水动力学。
- DOI:
10.1021/acsmacrolett.4c00046 - 发表时间:
2024 - 期刊:
- 影响因子:7.015
- 作者:
Nico Marioni;Oscar Nordness;Zidan Zhang;R. Sujanani;Benny D. Freeman;R. Segalman;R. Clément;Venkat Ganesan - 通讯作者:
Venkat Ganesan
Role of Dielectric Drag in Circumventing the Solubility-Diffusivity Trade-off in Zwitterionic Copolymer Membranes.
介电阻力在规避两性离子共聚物膜溶解度-扩散率权衡中的作用。
- DOI:
10.1021/acsmacrolett.3c00420 - 发表时间:
2023 - 期刊:
- 影响因子:7.015
- 作者:
H. S. Sachar;Zidan Zhang;Nico Marioni;Everett S. Zofchak;Venkat Ganesan - 通讯作者:
Venkat Ganesan
Venkat Ganesan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Venkat Ganesan', 18)}}的其他基金
Nanoparticle Dynamics in Polymer Solutions and Melts
聚合物溶液和熔体中的纳米颗粒动力学
- 批准号:
1721512 - 财政年份:2017
- 资助金额:
$ 39.26万 - 项目类别:
Continuing Grant
Fundamental Studies on Transport of Ions and Large Penetrants Through Structured Polymer Matrices
通过结构化聚合物基质传输离子和大渗透剂的基础研究
- 批准号:
1306844 - 财政年份:2013
- 资助金额:
$ 39.26万 - 项目类别:
Continuing Grant
Collaborative Research: Block Copolymer Compatibilizers for Controlled Morphology and Interfacial Properties in Polymer-Fullerene Blends
合作研究:用于控制聚合物-富勒烯共混物形态和界面性质的嵌段共聚物增容剂
- 批准号:
1264583 - 财政年份:2013
- 资助金额:
$ 39.26万 - 项目类别:
Standard Grant
Phase-Behavior and Complexation in Polyelectrolyte -Particle Mixtures
聚电解质-颗粒混合物中的相行为和络合
- 批准号:
1005739 - 财政年份:2010
- 资助金额:
$ 39.26万 - 项目类别:
Continuing Grant
CAREER: A Multiscale Approach for the Flow Behavior of Inhomogeneous Multicomponent Polymeric Materials
职业:非均质多组分聚合物材料流动行为的多尺度方法
- 批准号:
0347381 - 财政年份:2004
- 资助金额:
$ 39.26万 - 项目类别:
Standard Grant
Interactions and Self-Assembly of Particles in Complex Fluids
复杂流体中颗粒的相互作用和自组装
- 批准号:
0204199 - 财政年份:2002
- 资助金额:
$ 39.26万 - 项目类别:
Continuing Grant
相似国自然基金
基于MOF修饰的锂锰基聚阴离子正极反位缺陷的协同演化与电化学性能的相关性研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
从钙离子稳态角度探讨NLRP3介导的小胶质细胞焦亡在电针刺改善脓毒症相关性脑病海马损伤中的作用
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
从钙离子稳态角度探讨NLRP3介导的小胶质细胞焦亡在电针刺改善脓毒症相关性脑病海马损伤中的作用
- 批准号:82104584
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
基于MOF修饰的锂锰基聚阴离子正极反位缺陷的协同演化与电化学性能的相关性研究
- 批准号:52104307
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
AngII通过内质网钙离子通道介导肺上皮细胞程序性坏死参与重症急性胰腺炎相关性肺损伤的机制研究
- 批准号:82070662
- 批准年份:2020
- 资助金额:54 万元
- 项目类别:面上项目
相似海外基金
Immune mechanisms of pain of the IL-23IL-17 Axis in Inflammatory Arthritis
炎症性关节炎中 IL-23IL-17 轴疼痛的免疫机制
- 批准号:
10861492 - 财政年份:2023
- 资助金额:
$ 39.26万 - 项目类别:
Correlations of structure and function in regenerating corneal nerves
角膜神经再生过程中结构与功能的相关性
- 批准号:
10381498 - 财政年份:2019
- 资助金额:
$ 39.26万 - 项目类别:
Correlations of structure and function in regenerating corneal nerves
角膜神经再生过程中结构与功能的相关性
- 批准号:
9760302 - 财政年份:2019
- 资助金额:
$ 39.26万 - 项目类别:
Correlations of structure and function in regenerating corneal nerves
角膜神经再生过程中结构与功能的相关性
- 批准号:
9913986 - 财政年份:2019
- 资助金额:
$ 39.26万 - 项目类别:
ISCF Wave 1:Designing Electrodes for Na Ion Batteries via Structure Electrochemical Performance Correlations
ISCF 第一波:通过结构电化学性能相关性设计钠离子电池电极
- 批准号:
EP/R021554/2 - 财政年份:2019
- 资助金额:
$ 39.26万 - 项目类别:
Research Grant