Hamiltonian Theory of Fractionally Filled Chern Bands, and Disorder in Quantum Hall Ferromagnets
分数填充陈能带的哈密顿理论和量子霍尔铁磁体中的无序
基本信息
- 批准号:1306897
- 负责人:
- 金额:$ 27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-01 至 2019-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
NONTECHNICAL SUMMARYThis award supports theoretical research and education aimed to investigate novel states of electrons. Electrons are generally thought to be indivisible which is true at room temperature and under the conditions under which solid state devices normally operate. Most important to this research are the quantum Hall states, which occur in a two-dimensional sheet of electrons, usually at an artificially engineered interface between semiconductors, cooled to temperatures less than one degree from absolute zero, and placed in an a very strong magnetic field perpendicular to the sheet. In the simplest such state the electron can be thought of as "split" into three objects known as composite fermions. Each composite fermion has a charge one-third that of the electron along with other exotic properties. The charge and other properties of the excitation depend on the particular state. Some of these states offer possible platforms for quantum computing. Conventional, semiconductor quantum Hall states need extreme conditions. In the past decade a new way of potentially realizing such states has been proposed where the environment inside some materials can generate the equivalent of very strong internal magnetic fields. The PI aims to study both conventional quantum Hall states and these newly discovered possibilities, known as topological band materials. The PI will investigate whether topological band materials can support states that have not been discovered before, even in traditional quantum Hall systems. A main goal of the research is to understand the properties of such states in an approximate analytical way where the underlying physics is clear. This will enable understanding the similarities and the differences between conventional quantum Hall states and those in topological band materials. The PI will also utilize this approach to investigate conventional quantum Hall materials subjected to elastic strain. Any real material contains lattice imperfections, substituted atoms, and defects, collectively known as disorder. The PI will develop a controlled approach to investigate the role of disorder where experiments on some quantum Hall states suggest that the effect of disorder is important.The PI will also contribute to the organization of Winter Schools in India and will participate in the reorganization of the University Honors Program which provides a mechanism for students to learn about many disciplines and benefit from experimental learning.TECHNICAL SUMMARYThis award supports theoretical research and education aimed to investigate quantum Hall states and topological states in materials. It has recently been established that materials with strong spin-orbit coupling can form new types of insulators, known as topological insulators, because of the topological properties of the band structure. When such bands are full, they have a quantized Hall conductance. With partial filling and strong electron-electron interactions fractional quantum Hall-like states form. The research has two major thrusts: 1. Investigating novel states in fractionally filled topological bands: The PI will use an analytical approach to investigate Composite Fermion states in topological bands. (a) Ground state energies for gapped states at the principal fractions and collective excitations will be computed in the Hamiltonian approach developed for the fractional quantum Hall effect. (b) Transitions between principal fraction states of different spin will be investigated using ground state energy crossings. (c) Two different possibilities for the half-filled state, an electron fluid and a Composite Fermion fluid, will be investigated. The nature of the phase transition and low-energy excitations near the phase transition will be studied. (d) Edge states of fractionally filled topological bands will be studied using a conserving approximation. This is relevant for determining whether the topological band materials have excitations other than those of conventional fractional quantum Hall states. (e) Two time-reversed copies of topological bands are a model of a time-reversal invariant topological insulator. Fractionally filled states of strongly interacting electrons will be studied in this model. (f) Tilted fields or strain in the conventional fractional quantum Hall effects produces an anisotropy which has been measured. The PI will develop an analytical theory of such anisotopic states, and potential phase transitions into nematic-like states. 2. Elucidating the role of quenched disorder in quantum Hall ferromagnets: The prototypical system is the filling 1 bilayer, where experimental observations pose numerous challenges to theory, and where disorder seems to be essential. (a) The PI and collaborators will, at the first stage, mimic the nonperturbative effects of disorder by imposing a strong periodic potential on the quantum Hall system. Hartree-Fock and effective low-energy theories will be used to determine the generation of topological charges in response to the potential. (b) Collective excitations will be computed to derive an experimental signature in light scattering of such states. (c) A low-energy field theory will be constructed near the phase transitions between different arrangements of topological charge. (d) Weak disorder will be put in at this stage and renormalization group techniques will be used to determine the low-energy long-wavelength behavior near the transitions. The PI will also contribute to the organization of Winter Schools in India and will participate in the reorganization of the University Honors Program which provides a mechanism for students to learn about many disciplines and benefit from experimental learning.
非技术总结该奖项支持旨在研究电子新状态的理论研究和教育。电子通常被认为是不可分割的,这在室温和固态设备正常运行的条件下是正确的。对这项研究最重要的是量子霍尔态,它出现在二维电子片中,通常出现在人工设计的半导体之间的界面上,冷却到绝对零度以下的温度,并放置在垂直于电子片的非常强的磁场中。在最简单的这种状态下,电子可以被认为“分裂”成三个物体,称为复合费米子。每个复合费米子的电荷是电子的三分之一,还有其他奇特的性质。激发的电荷和其他性质取决于特定的状态。其中一些状态为量子计算提供了可能的平台。传统的半导体量子霍尔态需要极端的条件。在过去的十年里,已经提出了一种潜在地实现这种状态的新方法,其中某些材料内部的环境可以产生相当于非常强的内部磁场。PI的目标是研究传统的量子霍尔态和这些新发现的可能性,即所谓的拓扑带状材料。PI将调查拓扑能带材料是否可以支持以前没有发现的状态,即使在传统的量子霍尔系统中也是如此。这项研究的一个主要目标是以一种近似分析的方式理解这种状态的性质,其中潜在的物理是明确的。这将有助于理解传统量子霍尔态和拓扑带状材料中的量子霍尔态之间的异同。PI还将利用这种方法来研究受弹性应变影响的传统量子霍尔材料。任何真正的材料都含有晶格缺陷、取代原子和缺陷,统称为无序。PI将开发一种受控方法来研究无序的作用,其中对一些量子霍尔态的实验表明无序的影响是重要的。PI还将为印度冬季学校的组织做出贡献,并将参与大学荣誉计划的重组,该计划为学生提供一种机制,让他们学习许多学科并从实验学习中受益。技术总结该奖项支持旨在研究材料中量子霍尔态和拓扑态的理论研究和教育。最近发现,由于能带结构的拓扑性,具有强自旋轨道耦合的材料可以形成新类型的绝缘体,称为拓扑绝缘体。当这些带满时,它们就有了量子化的霍尔电导。通过部分填充和强电子-电子相互作用,形成了分数量子霍尔态。这项研究有两个主要内容:1.研究分数填充拓扑带中的新态:PI将使用一种分析方法来研究拓扑带中的复合费米子态。(A)用分数量子霍尔效应的哈密顿方法计算主分数和集体激发带隙能级的基态能量。(B)将使用基态能量交叉来研究不同自旋的主分数态之间的跃迁。(C)将研究半填充态的两种不同可能性--电子流体和复合费米子流体。我们将研究相变的性质和相变附近的低能激发。(D)分数填充拓扑带的边态将使用守恒近似来研究。这对于确定拓扑带状材料是否具有不同于传统分数量子霍尔态的激发是相关的。(E)拓扑带的两个时反副本是时反不变拓扑绝缘子的模型。在这个模型中将研究强相互作用电子的分数填充态。(F)传统分数量子霍尔效应中的倾斜场或应变产生了已测量的各向异性。PI将发展这种非同位素状态的分析理论,以及潜在的向列相状态的相变。2.阐明猝灭无序在量子霍尔铁磁体中的作用:原型系统是填充1双分子层,实验观察对理论提出了许多挑战,无序似乎是必不可少的。(A)在第一阶段,PI和合作者将通过在量子霍尔系统上施加一个强周期势来模拟无序的非微扰效应。哈特里-福克和有效低能理论将被用来确定拓扑电荷的产生响应于势。(B)将计算集体激发,以得出这些状态的光散射的实验特征。(C)在不同排列的拓扑电荷之间的相变附近,将建立一个低能场论。(D)在这一阶段将引入弱无序,并将使用重整化群技术来确定相变附近的低能长波长行为。国际和平协会还将为在印度组织冬季学校作出贡献,并将参与大学荣誉方案的重组,该方案为学生提供了一种学习许多学科并从实验学习中受益的机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ganpathy Murthy其他文献
Ganpathy Murthy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ganpathy Murthy', 18)}}的其他基金
Holography, Supersymmetry, and Numerics in Quantum Critical and Quantum Lifshitz Theories
量子临界和量子 Lifshitz 理论中的全息术、超对称性和数值
- 批准号:
0970069 - 财政年份:2010
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Mesoscopic Quantum Critical Regimes and Disorder-Driven Deconfinement
介观量子临界状态和无序驱动的解禁
- 批准号:
0703992 - 财政年份:2007
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Interacting, Disordered, Electrons: Two Tractable Limits
相互作用、无序电子:两个可处理的极限
- 批准号:
0311761 - 财政年份:2003
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
New Approach to the Fractional Quantum Hall Effects
分数量子霍尔效应的新方法
- 批准号:
0071611 - 财政年份:2000
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Simple Electronic Models of Fullerenes
富勒烯的简单电子模型
- 批准号:
9311949 - 财政年份:1993
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
- 批准号:12247163
- 批准年份:2022
- 资助金额:18.00 万元
- 项目类别:专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
- 批准号:61671064
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
A statistical decision theory of cognitive capacity
认知能力的统计决策理论
- 批准号:
DP240101511 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Discovery Projects
Numerical simulations of lattice field theory
晶格场论的数值模拟
- 批准号:
2902259 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Studentship
Dynamical Approaches to Number Theory and Additive Combinatorics
数论和加法组合学的动态方法
- 批准号:
EP/Y014030/1 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Research Grant
Non-perturbative Conformal Field Theory in Quantum Gravity and the Laboratory (Exact CFT)
量子引力中的非微扰共形场论和实验室(精确 CFT)
- 批准号:
EP/Z000106/1 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Research Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
AF: Small: Problems in Algorithmic Game Theory for Online Markets
AF:小:在线市场的算法博弈论问题
- 批准号:
2332922 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Conference: Pittsburgh Links among Analysis and Number Theory (PLANT)
会议:匹兹堡分析与数论之间的联系 (PLANT)
- 批准号:
2334874 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Conference: 9th Lake Michigan Workshop on Combinatorics and Graph Theory
会议:第九届密歇根湖组合学和图论研讨会
- 批准号:
2349004 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Standard Grant