Holography, Supersymmetry, and Numerics in Quantum Critical and Quantum Lifshitz Theories
量子临界和量子 Lifshitz 理论中的全息术、超对称性和数值
基本信息
- 批准号:0970069
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-15 至 2014-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This proposal from four physicists at the University of Kentucky concerns recent theoretical developments at the border between high-energy physics, mathematical physics, and condensed-matter physics. Over the past decade, the so-called AdS/CFT correspondence has proven to be a very useful theoretical "tool" for analyzing strongly coupled theories, i.e., theories for which a standard perturbative mathematical treatment is ineffective. This tool, which resulted from developments in theoretical high-energy physics, has already been used in order to study systems at the interface of high-energy and nuclear physics, such as the quark-gluon plasma. However, just in the past few years, a new direction for the AdS/CFT tool has become apparent --- this is to study strongly coupled systems in condensed-matter physics. This proposal aims to develop teachniques using the AdS/CFT correspondence in order to address difficult problems in equilibrium and non-equilibrium many-body systems near or at their critical points. The PI's also aim to study the entanglement entropy of topological states of matter. If successful, this would represent an entirely new way of attacking extremely difficult problems in condensed-matter physics, and has the potential to lead to important new insights in both condensed-matter physics and for the mathematics of the AdS/CFT correspondence itself. Thus, this proposal is not only interdisciplinary in its scope, but also potentially transformative in its research potential, exploiting the synergy between theoretical high-energy physics, mathematical physics, and condensed-matter physics. Additional broader impacts of this proposal are focused on the training of postdoctoral researchers who will work in this newly emerging discipline.
这个来自肯塔基州大学的四位物理学家的提议涉及高能物理学、数学物理学和凝聚态物理学之间的最新理论发展。在过去的十年中,所谓的AdS/CFT对应已被证明是分析强耦合理论的一个非常有用的理论“工具”,即,标准的微扰数学处理无效的理论。 这一工具是理论高能物理学发展的产物,已被用于研究高能物理与核物理交界处的系统,如夸克-胶子等离子体。 然而,就在过去的几年里,AdS/CFT工具的一个新方向已经变得明显-这是研究凝聚态物理中的强耦合系统。该建议的目的是发展techniques使用AdS/CFT对应,以解决困难的问题,在平衡和非平衡多体系统附近或在其临界点。PI的目标也是研究物质拓扑态的纠缠熵。如果成功,这将代表一种解决凝聚态物理学中极其困难问题的全新方式,并有可能在凝聚态物理学和AdS/CFT对应本身的数学中带来重要的新见解。 因此,这一提议不仅在其范围内是跨学科的,而且在其研究潜力方面也具有潜在的变革性,利用了理论高能物理学,数学物理学和凝聚态物理学之间的协同作用。 这项建议的其他更广泛的影响集中在培养博士后研究人员谁将在这个新兴的学科工作。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ganpathy Murthy其他文献
Ganpathy Murthy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ganpathy Murthy', 18)}}的其他基金
Hamiltonian Theory of Fractionally Filled Chern Bands, and Disorder in Quantum Hall Ferromagnets
分数填充陈能带的哈密顿理论和量子霍尔铁磁体中的无序
- 批准号:
1306897 - 财政年份:2014
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Mesoscopic Quantum Critical Regimes and Disorder-Driven Deconfinement
介观量子临界状态和无序驱动的解禁
- 批准号:
0703992 - 财政年份:2007
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Interacting, Disordered, Electrons: Two Tractable Limits
相互作用、无序电子:两个可处理的极限
- 批准号:
0311761 - 财政年份:2003
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
New Approach to the Fractional Quantum Hall Effects
分数量子霍尔效应的新方法
- 批准号:
0071611 - 财政年份:2000
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Simple Electronic Models of Fullerenes
富勒烯的简单电子模型
- 批准号:
9311949 - 财政年份:1993
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
相似海外基金
Random-field effects in spin models: Supersymmetry, criticality, and universality
自旋模型中的随机场效应:超对称性、临界性和普遍性
- 批准号:
EP/X026116/1 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Research Grant
Supersymmetry in the geometry of particle systems
粒子系统几何中的超对称性
- 批准号:
23K12983 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Geometric structures and twisted supersymmetry
几何结构和扭曲超对称
- 批准号:
EP/X014959/1 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Research Grant
Aspects of curved-space supersymmetry and of supersymmetric black holes.
弯曲空间超对称性和超对称黑洞的方面。
- 批准号:
2885396 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Studentship
Search for supersymmetry in events with missing ET and b-jets with ATLAS
使用 ATLAS 搜索缺少 ET 和 b 喷流的事件中的超对称性
- 批准号:
2665416 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Studentship
Mathematics and Supersymmetry
数学和超对称性
- 批准号:
563284-2021 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
University Undergraduate Student Research Awards
Searching for Supersymmetry at ATLAS at the LHC
在 LHC 的 ATLAS 上寻找超对称性
- 批准号:
2606420 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Studentship
New Calabi-Yau Geometries in String Theory and Supersymmetry
弦理论和超对称中的新卡拉比-丘几何
- 批准号:
RGPIN-2017-06971 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Discovery Grants Program - Individual
New Calabi-Yau Geometries in String Theory and Supersymmetry
弦理论和超对称中的新卡拉比-丘几何
- 批准号:
RGPIN-2017-06971 - 财政年份:2020
- 资助金额:
$ 15万 - 项目类别:
Discovery Grants Program - Individual
Phenomenology of Electroweak Symmetry Breaking, Supersymmetry, and the Frontiers of the Standard Model
电弱对称破缺、超对称性和标准模型前沿的现象学
- 批准号:
2013340 - 财政年份:2020
- 资助金额:
$ 15万 - 项目类别:
Standard Grant