Collaborative Research: CDS&E: Sculpting fluid flow using a programmed sequence of micro-pillars
合作研究:CDS
基本信息
- 批准号:1307550
- 负责人:
- 金额:$ 18.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-01 至 2016-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
CBET 1306866/1307550/1307743Collaborative Research: CDS&E: Sculpting fluid flow using a programmed sequence of micro-pillarsPI(s) Ganapathysubramanian (Iowa State U.), DiCarlo (UCLA), Zola (Rutgers)Controlling the shape and location of a fluid stream provides a fundamental tool for creating structured materials, preparing biological samples, and engineering heat and mass transport. Methods to manipulate the cross-sectional shape of fluids have focused on creating chaos and mixing by fluid twisting instead of ordering or structuring streams with precise sequences of fluid perturbations. The ability to engineer the cross-sectional shape of a fluid using the integrated inertial flow deformations induced by sequences of simple microstructures (i.e. pillars) was recently demonstrated. Discretization of single pillar operations followed by their programmed superposition allows for the hierarchical assembly of complex flow programs. Although this approach has allowed for the sculpting of complex fluid shapes, creating user-defined flow shapes important for practical applications currently requires laborious and time-consuming trial and error design iterations, and often complex fluid shapes of interest are not achievable in a reasonable time frame. The ability to create a user-defined flow shape and automatically determine a sequence of pillars that yields this shape is a significant and impactful advance, which is ideally addressed by computational approaches. This challenge motivates the objectives of the CDS&E project: (i) Computationally explore and create a library of pillar-induced transformations annotated at different levels of granularity to aid in computational selection using parallel CFD simulations. (ii) Develop efficient computational methods to solve the inverse problem and select pillar sequences for a set of desired flow transformation. This part of the project will explore mathematical and computational issues related to uniqueness of solution sequences, scalable approaches to deal with the large libraries of pillar transformations, and choice of cost-functionals to enable efficient solution to the design problem. (iii) Test the computational framework and associated solutions by fabricating microfluidic designs with the defined pillar sequences that address three transformative applications in medicine and materials, including fabricating tailored cross-sectional polymer fibers, and capturing biomolecules on microchannel surfaces.The introduction of a general strategy to program fluid streams in which the complexity of the nonlinear equations of fluid motion are abstracted from the user can impact biological, chemical and materials automation in the same way that abstraction of semiconductor physics from computer programmers enabled a revolution in computation. As part of dissemination efforts, gaming and educational modules involving immersive simulations and directed rubix-cube like puzzles will be developed that will allow the public and interested parties to experiment with different pillar programs and learn about fluid mechanics and applications in a gaming environment. These outreach and workforce development activities will emphasize to the community the crucial role of computing in science and technology. This outreach will synergistically enable crowd-sourced design of complex flow transformations for applications that have a major impact on cell diagnostics, nano-materials fabrication, and thermal cooling.
CBET 1306866/1307550/1307743合作研究:CDS E:使用微柱程序序列雕刻流体流动PI(s)Ganapathysubramanian(爱荷华州),DiCarlo(UCLA),Zola(Rutgers)控制流体流的形状和位置为创建结构化材料,制备生物样品以及工程热和质量传输提供了基本工具。 操纵流体的横截面形状的方法集中于通过流体扭曲来产生混沌和混合,而不是用精确的流体扰动序列来排序或结构化流。 最近证明了利用由简单微结构(即柱)的序列引起的集成惯性流变形来设计流体的横截面形状的能力。先将单个支柱作业离散化,然后按程序叠加,这样就可以将复杂的流程程序分层组装起来。 虽然这种方法允许复杂流体形状的造型,但创建对实际应用重要的用户定义的流动形状目前需要费力且耗时的试错设计迭代,并且通常在合理的时间范围内无法实现感兴趣的复杂流体形状。 创建用户定义的流形状并自动确定产生该形状的柱序列的能力是一个重要且有影响力的进步,这是通过计算方法理想地解决的。这一挑战激发了CDS E项目的目标&:(i)通过计算探索并创建一个以不同粒度级别注释的柱诱导变换库,以帮助使用并行计算流体动力学模拟进行计算选择。(ii)开发有效的计算方法来解决反问题,并为一组所需的流动转换选择支柱序列。该项目的这一部分将探索与解序列的唯一性相关的数学和计算问题、处理大型柱变换库的可扩展方法以及选择成本泛函以实现设计问题的有效解决方案。(iii)通过制造具有定义的柱序列的微流体设计来测试计算框架和相关解决方案,这些柱序列解决了医学和材料中的三个变革性应用,包括制造定制的横截面聚合物纤维,和捕获微通道表面上的生物分子。引入一种通用的策略来编程流体流,其中流体运动的非线性方程的复杂性从用户那里抽象出来,影响生物,化学和材料自动化,就像计算机程序员对半导体物理的抽象使计算发生革命一样。作为传播工作的一部分,将开发涉及沉浸式模拟和定向魔方等谜题的游戏和教育模块,这将允许公众和感兴趣的各方尝试不同的支柱计划,并了解游戏环境中的流体力学和应用。这些推广和劳动力发展活动将向社区强调计算在科学和技术中的关键作用。这种推广将协同实现复杂流动转换的众包设计,用于对细胞诊断,纳米材料制造和热冷却产生重大影响的应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dino Di Carlo其他文献
Rapid deformability cytometry for tissue biopsies
用于组织活检的快速变形细胞术
- DOI:
10.1038/s41551-023-01110-5 - 发表时间:
2023-10-30 - 期刊:
- 影响因子:26.600
- 作者:
Dino Di Carlo - 通讯作者:
Dino Di Carlo
Cytological and Cytogenetic Analysis of Large Circulating Cells from Blood
- DOI:
10.1016/j.jasc.2014.09.191 - 发表时间:
2014-09-01 - 期刊:
- 影响因子:
- 作者:
Derek Go;Sean O'Byrne;Rachel Conrad;Jianyu Rao;Nagesh Rao;Edward Garon;Jonathan Goldman;Rajan Kulkarni;Elodie Sollier;Dino Di Carlo - 通讯作者:
Dino Di Carlo
Sequentially addressable dielectrophoretic array for high-throughput large-droplet sorting
用于高通量大液滴分选的顺序可寻址介电泳阵列
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Akihiro Isozaki;Yuta Nakagawa;Mun Hong Loo;Dino Di Carlo;and Keisuke Goda - 通讯作者:
and Keisuke Goda
Machine learning in point-of-care testing: innovations, challenges, and opportunities
即时检验中的机器学习:创新、挑战与机遇
- DOI:
10.1038/s41467-025-58527-6 - 发表时间:
2025-04-02 - 期刊:
- 影响因子:15.700
- 作者:
Gyeo-Re Han;Artem Goncharov;Merve Eryilmaz;Shun Ye;Barath Palanisamy;Rajesh Ghosh;Fabio Lisi;Elliott Rogers;David Guzman;Defne Yigci;Savas Tasoglu;Dino Di Carlo;Keisuke Goda;Rachel A. McKendry;Aydogan Ozcan - 通讯作者:
Aydogan Ozcan
High-throughput , Microfluidic Monitoring of Enzymatic Activity for Personalized Medicine
个性化医疗酶活性的高通量、微流体监测
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Jaideep S. Dudani;Derek Go;Ankit Gupta;G. Kocharyan;Roxanne Loo;Nova Wang;Dino Di Carlo - 通讯作者:
Dino Di Carlo
Dino Di Carlo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dino Di Carlo', 18)}}的其他基金
2017 Physics and Chemistry of Microfluidics Gordon Research Conference
2017年微流控物理与化学戈登研究会议
- 批准号:
1664331 - 财政年份:2017
- 资助金额:
$ 18.3万 - 项目类别:
Standard Grant
EAGER: Evolving Multipurpose Biological Magnetic Nanoparticles
EAGER:不断发展的多用途生物磁性纳米颗粒
- 批准号:
1403984 - 财政年份:2014
- 资助金额:
$ 18.3万 - 项目类别:
Standard Grant
USA-JAPAN International Nano-Biotechnology Workshop
美国-日本国际纳米生物技术研讨会
- 批准号:
1406966 - 财政年份:2013
- 资助金额:
$ 18.3万 - 项目类别:
Standard Grant
CAREER: High-throughput Single-cell Biophysics
职业:高通量单细胞生物物理学
- 批准号:
1150588 - 财政年份:2012
- 资助金额:
$ 18.3万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: CDS&E: data-enabled dynamic microstructural modeling of flowing complex fluids
合作研究:CDS
- 批准号:
2347345 - 财政年份:2024
- 资助金额:
$ 18.3万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E: Generalizable RANS Turbulence Models through Scientific Multi-Agent Reinforcement Learning
合作研究:CDS
- 批准号:
2347423 - 财政年份:2024
- 资助金额:
$ 18.3万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E: data-enabled dynamic microstructural modeling of flowing complex fluids
合作研究:CDS
- 批准号:
2347344 - 财政年份:2024
- 资助金额:
$ 18.3万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E: Generalizable RANS Turbulence Models through Scientific Multi-Agent Reinforcement Learning
合作研究:CDS
- 批准号:
2347422 - 财政年份:2024
- 资助金额:
$ 18.3万 - 项目类别:
Standard Grant
CDS&E/Collaborative Research: Local Gaussian Process Approaches for Predicting Jump Behaviors of Engineering Systems
CDS
- 批准号:
2420358 - 财政年份:2024
- 资助金额:
$ 18.3万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E: An experimentally validated, interactive, data-enabled scientific computing platform for cardiac tissue ablation characterization and monitoring
合作研究:CDS
- 批准号:
2245152 - 财政年份:2023
- 资助金额:
$ 18.3万 - 项目类别:
Standard Grant
CDS&E/Collaborative Research: Data-Driven Inverse Design of Additively Manufacturable Aperiodic Architected Cellular Materials
CDS
- 批准号:
2245298 - 财政年份:2023
- 资助金额:
$ 18.3万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E-MSS: Community detection via covariance structures
合作研究:CDS
- 批准号:
2245380 - 财政年份:2023
- 资助金额:
$ 18.3万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E: Systematic Predictions for Dynamical Signatures of New Dark Matter Physics in Galaxies
合作研究:CDS
- 批准号:
2307787 - 财政年份:2023
- 资助金额:
$ 18.3万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E: Computational Exploration of Electrically Conductive Metal-Organic Frameworks as Cathode Materials in Lithium-Sulfur Batteries
合作研究:CDS
- 批准号:
2302618 - 财政年份:2023
- 资助金额:
$ 18.3万 - 项目类别:
Standard Grant